Modeling Regular Polysemy: A Study on the Semantic Classification of Catalan Adjectives

We present a study on the automatic acquisition of semantic classes for Catalan adjectives from distributional and morphological information, with particular emphasis on polysemous adjectives. The aim is to distinguish and characterize broad classes, such as qualitative (gran ‘big’) and relational (pulmonar ‘pulmonary’) adjectives, as well as to identify polysemous adjectives such as econòmic (‘economic ∣ cheap’). We specifically aim at modeling regular polysemy, that is, types of sense alternations that are shared across lemmata. To date, both semantic classes for adjectives and regular polysemy have only been sparsely addressed in empirical computational linguistics.Two main specific questions are tackled in this article. First, what is an adequate broad semantic classification for adjectives? We provide empirical support for the qualitative and relational classes as defined in theoretical work, and uncover one type of adjective that has not received enough attention, namely, the event-related class. Second, how is regular polysemy best modeled in computational terms? We present two models, and argue that the second one, which models regular polysemy in terms of simultaneous membership to multiple basic classes, is both theoretically and empirically more adequate than the first one, which attempts to identify independent polysemous classes. Our best classifier achieves 69.1% accuracy, against a 51% baseline.

[1]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[2]  Slava M. Katz,et al.  Principled Disambiguation: Discriminating Adjective Senses with Modified Nouns , 1995, CL.

[3]  Bonnie J. Dorr,et al.  Role of Word Sense Disalnbiguation in Lexical Acquisition: Predicting Semantics from Syntactic Cues , 1996, COLING.

[4]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[5]  Rob Malouf,et al.  The Order of Prenominal Adjectives in Natural Language Generation , 2000, ACL.

[6]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[7]  Louise McNally,et al.  Relational adjectives as properties of kinds , 2004 .

[8]  Donald Hindle,et al.  Noun Classification From Predicate-Argument Structures , 1990, ACL.

[9]  Wee Sun Lee,et al.  Learning Semantic Classes for Word Sense Disambiguation , 2005, ACL.

[10]  Vasileios Hatzivassiloglou,et al.  Towards the Automatic Identification of Adjectival Scales: Clustering Adjectives According to Meaning , 1993, ACL.

[11]  Ted Briscoe,et al.  Automatic Acquisition of Adjectival Subcategorization from Corpora , 2005, ACL.

[12]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[13]  Andrew McCallum,et al.  Collective multi-label classification , 2005, CIKM '05.

[14]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[15]  R. Montague Formal philosophy; selected papers of Richard Montague , 1974 .

[16]  Roberto Navigli,et al.  Clustering and Diversifying Web Search Results with Graph-Based Word Sense Induction , 2013, CL.

[17]  Richard Montague,et al.  ENGLISH AS A FORMAL LANGUAGE , 1975 .

[18]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[19]  Christiane Fellbaum,et al.  Modifiers in WordNet , 1998 .

[20]  Maria Lapata,et al.  Acquisition and modeling of lexical knowledge: a corpus-based investigation of systematic polysemy , 2000 .

[21]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[22]  Koby Crammer,et al.  Flexible Text Segmentation with Structured Multilabel Classification , 2005, HLT.

[23]  Mirella Lapata,et al.  Bayesian Word Sense Induction , 2009, EACL.

[24]  Janyce Wiebe,et al.  Effects of Adjective Orientation and Gradability on Sentence Subjectivity , 2000, COLING.

[25]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[26]  George Karypis,et al.  CLUTO - A Clustering Toolkit , 2002 .

[27]  J. Moake,et al.  This article has been cited by other articles , 2003 .

[28]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[29]  Rie Kubota Ando,et al.  Applying Alternating Structure Optimization to Word Sense Disambiguation , 2006, CoNLL.

[30]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[31]  Gemma Boleda Torrent Automatic acquisition of semantic classes for adjectives , 2007 .

[32]  Sabine Schulte im Walde,et al.  An Analysis of Human Judgements on Semantic Classification of Catalan Adjectives , 2008 .

[33]  Jurij D. Apresjan REGULAR POLYSEMY , 1974 .

[34]  Mirella Lapata,et al.  Verb Class Disambiguation Using Informative Priors , 2004, CL.

[35]  Ron Artstein,et al.  Survey Article: Inter-Coder Agreement for Computational Linguistics , 2008, CL.

[36]  Sebastian Padó,et al.  Ontology-based Distinction between Polysemy and Homonymy , 2011, IWCS.

[37]  Maria Lapata,et al.  A Corpus-based Account of Regular Polysemy: The Case of Context-sensitive Adjectives , 2001, NAACL.

[38]  Remco R. Bouckaert,et al.  Estimating replicability of classifier learning experiments , 2004, ICML.

[39]  Gemma Boleda,et al.  The Database of Catalan Adjectives , 2010, LREC.

[40]  B. Levin,et al.  The formation of adjectival passives , 1985 .

[41]  Sabine Schulte im Walde Experiments on the Automatic Induction of German Semantic Verb Classes , 2006, CL.

[42]  Massimo Poesio,et al.  Attribute-Based and Value-Based Clustering: An Evaluation , 2004, EMNLP.

[43]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[44]  Hinrich Sch Automatic Word Sense Discrimination , 1998 .

[45]  Sergei Nirenburg,et al.  Book Review: Ontological Semantics, by Sergei Nirenburg and Victor Raskin , 2004, CL.

[46]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[48]  Jean Véronis,et al.  A study of polysemy judgements and inter-annotator agreement , 1999 .

[49]  C. Bally Linguistique générale et linguistique française , 1932 .

[50]  M. Baltin,et al.  The Mental representation of grammatical relations , 1985 .

[51]  Ron Artstein,et al.  The Reliability of Anaphoric Annotation, Reconsidered: Taking Ambiguity into Account , 2005, FCA@ACL.

[52]  Max J. Cresswell,et al.  Formal philosophy, selected papers of richard montague , 1976 .

[53]  P. Resnik Selection and information: a class-based approach to lexical relationships , 1993 .

[54]  Thorsten Brants,et al.  Inter-annotator Agreement for a German Newspaper Corpus , 2000, LREC.

[55]  John Verzani,et al.  Using R for introductory statistics , 2018 .

[56]  Christopher Potts,et al.  Learning the meaning of scalar adjectives , 2010 .

[57]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[58]  Naftali Tishby,et al.  Distributional Clustering of English Words , 1993, ACL.

[59]  Joydeep Ghosh,et al.  Model-based overlapping clustering , 2005, KDD '05.

[60]  Francis K. H. Quek,et al.  Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets , 2003, Pattern Recognit..

[61]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[62]  Mats Rooth,et al.  Using a Probabilistic Class-Based Lexicon for Lexical Ambiguity Resolution , 2000, COLING.

[63]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[64]  Gemma Boleda,et al.  Automatic acquisition of syntactic verb classes with basic resources , 2005, Lang. Resour. Evaluation.

[65]  Mats Rooth,et al.  Inducing a Semantically Annotated Lexicon via EM-Based Clustering , 1999, ACL.

[66]  Gemma Boleda,et al.  Modelling Polysemy in Adjective Classes by Multi-Label Classification , 2007, EMNLP.

[67]  Diana McCarthy,et al.  Using Semantic Preferences to Identify Verbal Participation in Role Switching Alternations , 2000, ANLP.

[68]  Gemma Boleda,et al.  CATCG: a general purpose parsing tool applied , 2002, LREC.

[69]  Sergei Nirenburg,et al.  An Applied Ontological Semantic Microtheory of Adjective Meaning for Natural Language Processing , 1998, Machine Translation.

[70]  Joaquim Rafel Un corpus general de referència de la llengua catalana , 1994 .

[71]  Zellig S. Harris,et al.  Mathematical structures of language , 1968, Interscience tracts in pure and applied mathematics.

[72]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[73]  Michael G. Dyer,et al.  Word Sense Disambiguation of Adjectives Using Probabilistic Networks , 2000, COLING.

[74]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[75]  Julie Weeds,et al.  Finding Predominant Word Senses in Untagged Text , 2004, ACL.

[76]  Hinrich Schütze,et al.  Automatic Word Sense Discrimination , 1998, Comput. Linguistics.

[77]  Suzanne Stevenson,et al.  A General Feature Space for Automatic Verb Classification , 2003, EACL.

[78]  Yuval Krymolowski,et al.  Clustering Polysemic Subcategorization Frame Distributions Semantically , 2003, ACL.

[79]  Ted Briscoe,et al.  Semi-productive Polysemy and Sense Extension , 1995, J. Semant..

[80]  Antonietta Alonge,et al.  Encoding information on adjectives in a lexical-semantic net for computational applications , 2000, ANLP.

[81]  Katrin Erk,et al.  Exemplar-Based Models for Word Meaning in Context , 2010, ACL.

[82]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[83]  Gemma Boleda,et al.  Acquisition of Semantic Classes for Adjectives from Distributional Evidence , 2004, COLING.

[84]  Zeno Vendler,et al.  Verbs and Times , 1957, The Language of Time - A Reader.

[85]  Suzanne Stevenson,et al.  Automatic Verb Classification Based on Statistical Distributions of Argument Structure , 2001, CL.