Thin-film piezoelectric and high-aspect ratio polymer leg mechanisms for millimeter-scale robotics

Millimeter-scale micro-robotic leg actuators are described that integrate thin-film lead zirconate titanate (PZT) piezoelectric actuation with compliant structures formed from parylene-C polymer. Models for out-of-plane rotation using piezoelectric cantilevers and in-plane rotation using high-aspect ratio polymer beams are discussed. Opportunities are highlighted for thin polymer films to aid in load-bearing, flexibility, and resilience of piezoelectric micro-robot appendages. A simple 5 mm × 2.4 mm × 0.15 mm hexapod robot prototype incorporating multiple actuators in each leg assembly is fabricated and tested within the silicon wafer in which it was built. Completed robot leg performance shows close agreement between modeled and tested static and dynamic characteristics, with potential benefits for future walking micro-robots from low power requirements relative to payload capacity and large amplitude motion at resonance.

[1]  G. Spinks,et al.  Design, fabrication and testing of piezoelectric polymer PVDF microactuators , 2006 .

[2]  Daniel P Ferris,et al.  Resonant hopping of a robot controlled by an artificial neural oscillator , 2008, Bioinspiration & biomimetics.

[3]  Robert E. Weigle,et al.  Experimental techniques for predicting fatigue failure of cannon-breech mechanisms , 1965 .

[4]  J. Pulskamp,et al.  Thin-Film PZT Lateral Actuators With Extended Stroke , 2008, Journal of Microelectromechanical Systems.

[5]  Robert Ruprecht,et al.  Production of metallic high aspect ratio microstructures by microcasting , 2002 .

[6]  Multiple-Mode Dynamic Model for Piezoelectric Micro-Robot Walking , 2016 .

[7]  Heinz Wörn,et al.  Energy Efficient HW/SW Integration in an Autonomous Microrobot , 2008 .

[8]  L. E. Cross,et al.  Constitutive equations of symmetrical triple layer piezoelectric benders , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  K.S.J. Pister,et al.  Robot leg motion in a planarized-SOI, two-layer poly-Si process , 2005, Journal of Microelectromechanical Systems.

[10]  C. J. Wilson,et al.  Fracture testing of silicon microcantilever beams , 1996 .

[11]  Bo Lu Parylene as a new membrane material for BioMEMS applications , 2012 .

[12]  Gregory T. A. Kovacs,et al.  OMNIDIRECTIONAL WALKING MICROROBOT REALIZED BY THERMAL MICROACTUATOR ARRAYS , 2001 .

[13]  Tianhong Cui,et al.  A polymer-based bidirectional micropump driven by a PZT bimorph , 2011 .

[14]  Y. Tai,et al.  Micromachined High-Aspect-Ratio Parylene Spring and Its Application to Low-Frequency Accelerometers , 2006, Journal of Microelectromechanical Systems.

[15]  Harry E. Stephanou,et al.  AFAM: An Articulated Four Axes Microrobot for Nanoscale Applications , 2013, IEEE Transactions on Automation Science and Engineering.

[16]  P. Vettiger,et al.  Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[17]  T. A. Harder,et al.  Yield strength of thin-film parylene-C , 2004 .

[18]  Robert J. Wood,et al.  Design and Fabrication of the Harvard Ambulatory Micro-Robot , 2009, ISRR.

[19]  K. Najafi,et al.  High aspect ratio deep silicon etching , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[20]  Gary W. Rubloff,et al.  Subatmospheric chemical vapor deposition ozone/TEOS process for SiO2 trench filling , 1995 .

[21]  K. Shung,et al.  Single crystal PZN/PT-polymer composites for ultrasound transducer applications , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  Victor M. Bright,et al.  Prototype microrobots for micro-positioning and micro-unmanned vehicles , 2000 .

[23]  Horacio Dante Espinosa,et al.  Size effects on the mechanical behavior of gold thin films , 2003 .

[24]  J. Pulskamp,et al.  Multi-Degree-of-Freedom Thin-Film PZT-Actuated Microrobotic Leg , 2012, Journal of Microelectromechanical Systems.

[25]  K. Pister,et al.  Solar powered 10 mg silicon robot , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[26]  Khalil Najafi,et al.  A micro vibratory stage for on chip physical stimulation and calibration of MEMS gyroscopes , 2014, 2014 International Symposium on Inertial Sensors and Systems (ISISS).

[27]  Kenn R. Oldham,et al.  Coordinated Voltage Conversion and Low-Power Micro-Actuator Switching , 2011 .

[28]  Jong-Oh Park,et al.  A ciliary based 8-legged walking micro robot using cast IPMC actuators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[29]  Kristofer S. J. Pister,et al.  Design of an Autonomous Jumping Microrobot , 2022 .

[30]  K. Lam,et al.  MICROMACHINED PIEZOELECTRIC POLYMER MEMBRANE ACOUSTIC SENSOR , 2005 .

[31]  Yangchao Tian,et al.  Fabrication of high-aspect-ratio microstructures using SU8 photoresist , 2005 .

[32]  Göran Stemme,et al.  A WALKING SILICON MICRO-ROBOT , 1999 .

[33]  Kristin L. Wood,et al.  A tether-less Legged Piezoelectric Miniature Robot using bounding gait locomotion for bidirectional motion , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[34]  S. Rocks,et al.  Micromoulding of lead zirconate titanate (PZT) structures for MEMS , 2007 .

[35]  Yuen Kuan Yong,et al.  Miniature Resonant Ambulatory Robot , 2017, IEEE Robotics and Automation Letters.

[36]  Yuen Kuan Yong,et al.  Design and characterization of a miniature monolithic piezoelectric hexapod robot , 2016, 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[37]  L. Schadler,et al.  Investigation into the Thermal and Mechanical Behavior of PMMA/Alumina Nanocomposites , 2000 .

[38]  K. Oldham,et al.  Modeling and Optimal Low-Power On–Off Control of Thin-Film Piezoelectric Rotational Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[39]  Paul Muralt,et al.  Design of novel thin-film piezoelectric accelerometer , 1996 .

[40]  Ken Saito,et al.  Insect-type MEMS microrobot with mountable bare chip IC of artificial neural networks , 2016, Artificial Life and Robotics.

[41]  Holger Becker,et al.  Hot embossing as a method for the fabrication of polymer high aspect ratio structures , 2000 .

[42]  Satyandra K. Gupta,et al.  Multi-material compliant mechanisms for mobile millirobots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[43]  R. Stutz,et al.  Wafer-Level Transfer Technologies for PZT-Based RF MEMS Switches , 2010, Journal of Microelectromechanical Systems.

[44]  MECHANICAL CHARACTERIZATION OF GOLD THIN FILMS FOR RF-MEMS , 2005 .

[45]  John W. Suh,et al.  Thermally Actuated Omnidirectional Walking Microrobot , 2010, Journal of Microelectromechanical Systems.

[46]  Jeffrey S. Pulskamp,et al.  Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility , 2012, Defense, Security, and Sensing.

[47]  B. Satish,et al.  Piezoelectric properties of ferroelectric PZT-polymer composites , 2001 .

[48]  Sung-Goon Kang,et al.  Acoustic and electromechanical properties of 1-3 PZT composites for ultrasonic transducer arrays fabricated by sacrificial micro PMMA mold , 2003 .

[49]  Richard E. Thompson,et al.  Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing , 2006 .

[50]  K. Jonnalagadda,et al.  Mechanical Behavior and Anisotropy of Spin-Coated SU-8 Thin Films for MEMS , 2014, Journal of Microelectromechanical Systems.

[51]  Zachary J. Traina,et al.  A strain amplifying piezoelectric MEMS actuator , 2007 .

[52]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[53]  Biju Edamana,et al.  A Near-Optimal Sensor Scheduling Strategy for an on–off Controller With an Expensive Sensor , 2014, IEEE/ASME Transactions on Mechatronics.