Testing nonlinear operators

We study testing of nonlinear operators; we want to test whether an implementation operator conforms to a specification operator. The problem is difficult, since there can be infinitely many possible inputs but we can only test finitely many of them. An implementation operator may perform well on the tested inputs but may be faulty on the untested inputs. In general, finite testing is inherently inconclusive. Consequently, we modify the problem in three different directions and obtain positive results: (1) We consider an infinite sequence of tests and prove that testing is decidable in the limit; (2) We relax the error criterion and show that finite testing is conclusive, however, the cost could be formidable; and (3) We tolerate faults on a negligible subset of inputs and develop a probabilistic testing algorithm with a significantly reduced cost. Our results indicate that test sets are universal; they only depend on the structure of the input set. In fact, they are provided by an ε net of the input set.

[1]  Brian W. Kernighan,et al.  Elements of Programming Style , 1974 .

[2]  Andrew Chi-Chih Yao,et al.  Coherent Functions and Program ( extended abstract ) Checkers , .

[3]  W. Morven Gentleman,et al.  More on algorithms that reveal properties of floating point arithmetic units , 1974, CACM.

[4]  Jean-Paul Delahaye,et al.  Algorithmes pour suites non convergentes , 1980 .

[5]  Michael A. Malcolm,et al.  Algorithms to reveal properties of floating-point arithmetic , 1972, CACM.

[6]  J. Delahaye,et al.  Sequence Transformations , 1988 .

[7]  G. Lorentz Approximation of Functions , 1966 .

[8]  W. Miller The engineering of numerical software , 1984 .

[9]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[10]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[11]  Geir Storvik,et al.  Simulation and Monte Carlo Methods , 2006 .

[12]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[13]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[14]  T. Cover On Determining the Irrationality of the Mean of a Random Variable , 1973 .

[15]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[16]  Henryk Wozniakowski Complexity of verification and computation for IBC problems , 1992, J. Complex..

[17]  Philip M. Long,et al.  On-line learning of linear functions , 1991, STOC '91.

[18]  Norm L. Schryer,et al.  A Test of a Computer's Floating-Point Arithmetic Unit , 1981 .

[19]  Dana Angluin,et al.  Computational learning theory: survey and selected bibliography , 1992, STOC '92.

[20]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[21]  Shai Ben-David,et al.  Can Finite Samples Detect Singularities of Real-Valued Functions? , 1992, STOC '92.

[22]  Henryk Woźniakowski,et al.  Testing linear operators , 1995 .

[23]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[24]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[25]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[26]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[27]  H. Wo,et al.  Complexity of Verification and Computation for Ibc Problems , 1990 .

[28]  H. Woxniakowski Information-Based Complexity , 1988 .

[29]  K. Parthasarathy PROBABILITY MEASURES IN A METRIC SPACE , 1967 .

[30]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[31]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[32]  Jean Marie Chesneaux The equality relations in scientific computing , 2005, Numerical Algorithms.

[33]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[34]  Kenneth L. Clarkson,et al.  RANDOMIZED GEOMETRIC ALGORITHMS , 1992 .

[35]  Henryk Wozniakowski,et al.  Relaxed verification for continuous problems , 1992, J. Complex..

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  B. Germain-Bonne,et al.  Résultats négatifs en accélération de la convergence , 1980 .