The Joint Gravity Model 3

An improved Earth geopotential model, complete to spherical harmonic degree and order 70, has been determined by combining the Joint Gravity Model 1 (JGM 1) geopotential coefficients, and their associated error covariance, with new information from SLR, DORIS, and GPS tracking of TOPEX/Poseidon, laser tracking of LAGEOS 1, LAGEOS 2, and Stella, and additional DORIS tracking of SPOT 2. The resulting field, JGM 3, which has been adopted for the TOPEX/Poseidon altimeter data rerelease, yields improved orbit accuracies as demonstrated by better fits to withheld tracking data and substantially reduced geographically correlated orbit error. Methods for analyzing the performance of the gravity field using high-precision tracking station positioning were applied. Geodetic results, including station coordinates and Earth orientation parameters, are significantly improved with the JGM 3 model. Sea surface topography solutions from TOPEX/Poseidon altimetry indicate that the ocean geoid has been improved. Subset solutions performed by withholding either the GPS data or the SLR/DORIS data were computed to demonstrate the effect of these particular data sets on the gravity model used for TOPEX/Poseidon orbit determination.

[1]  C. Shum,et al.  The Use of GPS Data for Global Gravity Field Determination , 1996 .

[2]  Laurent Soudarin,et al.  Large‐scale tectonic plate motions measured with the DORIS Space Geodesy System , 1995 .

[3]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[4]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[5]  Carl Wunsch,et al.  Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large‐scale ocean circulation , 1994 .

[6]  C. Koblinsky,et al.  An error covariance model for sea surface topography and velocity derived from TOPEX/POSEIDON Altimetry , 1994 .

[7]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[8]  D. Chambers,et al.  Accuracy assessment of the large‐scale dynamic ocean topography from TOPEX/POSEIDON altimetry , 1994 .

[9]  Bob E. Schutz,et al.  Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2 , 1994 .

[10]  Hyung-Jin Rim,et al.  Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON , 1994 .

[11]  Thomas P. Yunck,et al.  The GPS flight experiment on TOPEX/POSEIDON , 1994 .

[12]  Pascal Willis,et al.  First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon , 1994 .

[13]  N. K. Pavlis,et al.  A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3 , 1994 .

[14]  Michael Watkins,et al.  Comparison of terrestrial reference frame velocities determined from SLR and VLBI , 1994 .

[15]  John C. Ries,et al.  Absolute positioning using Doris tracking of the SPOT‐2 satellite , 1992 .

[16]  S. Luthcke,et al.  Erratum-Modeling Radiation Forces Acting on Topex/Poseidon for Precision Orbit Determination , 1992 .

[17]  C. Boucher,et al.  Positioning results with doris on SPOT2 after first year of mission , 1992 .

[18]  John C. Ries,et al.  Progress in the determination of the gravitational coefficient of the Earth , 1992 .

[19]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1992 .

[20]  Richard H. Rapp,et al.  The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models , 1991 .

[21]  Bob E. Schutz,et al.  Comparison of VLBI and SLR geocentric site coordinates , 1991 .

[22]  D. Yuan The determination and error assessment of the Earth's gravity field model , 1991 .

[23]  Richard H. Rapp,et al.  The development and analysis of geopotential coefficient models to spherical harmonic degree 360 , 1990 .

[24]  Richard H. Rapp,et al.  The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling , 1990 .

[25]  Precision orbit determination for Topex , 1990 .

[26]  An Improved Model for the Earth’s Gravity Field , 1990 .

[27]  W. Eddy,et al.  The GEM-T2 Gravitational Model , 1989 .

[28]  Francis J. Lerch,et al.  Optimum data weighting and error calibration for estimation of gravitational parameters , 1989 .

[29]  E. C. Pavlis,et al.  An improved error assessment for the GEM-T1 gravitational model , 1989 .

[30]  E. C. Pavlis,et al.  A new gravitational model for the earth from satellite tracking data - GEM-T1 , 1988 .

[31]  B. T. Truong,et al.  DORIS - A precise satellite-positioning Doppler system , 1988 .

[32]  B. Tapley,et al.  Radial, transverse and normal satellite position perturbations due to the geopotential , 1987 .

[33]  M. Lefebvre,et al.  Science opportunities from the Topex/Poseidon mission , 1986 .

[34]  B. Tapley,et al.  Geographically correlated orbit error and its effect on satellite altimetry missions , 1985 .

[35]  John Degnan,et al.  Satellite Laser Ranging: Current Status and Future Prospects , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[36]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[37]  Francis J. Lerch,et al.  Goddard earth models for oceanographic applications (GEM 10B and IOC) , 1981 .

[38]  Carl Wunsch,et al.  On Using Satellite Altimetry to Determine the General Circulation of the Oceans With Application to Geoid Improvement (Paper 80R0631) , 1980 .

[39]  K. Wyrtki Sea Level and the Seasonal Fluctuations of the Equatorial Currents in the Western Pacific Ocean , 1974 .

[40]  W. M. Kaula Theory of satellite geodesy , 1966 .

[41]  Robert R. Newton,et al.  The Earth's gravity field as deduced from the doppler tracking of five satellites , 1965 .