Quantum noise in optical fibers. I. Stochastic equations

We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or +P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.

[1]  H. Haus,et al.  Raman noise and soliton squeezing , 1994 .

[2]  Quantum theory of propagation of nonclassical radiation in a near-resonant medium. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[3]  M. Hillery,et al.  Quantization of electrodynamics in nonlinear dielectric media , 1984 .

[4]  Yaochun Shen,et al.  Introduction to Nonlinear Laser Spectroscopy , 1984 .

[5]  P. Dean The Vibrational Properties of Disordered Systems: Numerical Studies , 1972 .

[6]  Machida,et al.  Observation of Optical Soliton Photon-Number Squeezing. , 1996, Physical review letters.

[7]  Peter D. Drummond,et al.  Simulation of Quantum Effects in Raman-Active Waveguides , 1993 .

[8]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[9]  P. Drummond,et al.  Quantum-field theory of squeezing in solitons , 1987 .

[10]  Werner Stulpe,et al.  Phase‐space representations of general statistical physical theories , 1992 .

[11]  P. D. Drummond,et al.  QUANTUM THEORY OF DISPERSIVE ELECTROMAGNETIC MODES , 1998 .

[12]  R. Shelby,et al.  Quantum solitons in optical fibres , 1993, Nature.

[13]  K. Bergman,et al.  Analysis and measurement of GAWBS spectrum in a nonlinear fiber ring , 1992 .

[14]  L. Mollenauer,et al.  Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction. , 1989, Optics letters.

[15]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[16]  L. Mollenauer Solitons in optical fibres and the soliton laser , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  R. Glauber,et al.  Quantum Theory of Light Propagation in Amplifying Media , 1971 .

[18]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[19]  Shelby,et al.  Guided acoustic-wave Brillouin scattering. , 1985, Physical review. B, Condensed matter.

[20]  R. Stolen,et al.  Experimental observations of picosecond pulse narrowing and solitons in optical fibers , 1981, IEEE Journal of Quantum Electronics.

[21]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[22]  Carter Quantum theory of nonlinear fiber optics: Phase-space representations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Reid,et al.  Squeezing of quantum solitons. , 1987, Physical review letters.

[24]  Drummond,et al.  Phase-noise scaling in quantum soliton propagation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  Peter D. Drummond,et al.  Robust Algorithms for Solving Stochastic Partial Differential Equations , 1997 .

[26]  Shu Namiki,et al.  Observation of nearly quantum-limited timing jitter in an all-fiber ring laser , 1996 .

[27]  E. Desurvire,et al.  Erbium‐Doped Fiber Amplifiers: Principles and Applications , 1995 .

[28]  Roger H. Stolen,et al.  Development of the stimulated Raman spectrum in single-mode silica fibers , 1984 .

[29]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[30]  E. Desurvire Erbium-doped fiber amplifiers , 1994 .

[31]  N. J. Smith,et al.  Soliton transmission using periodic dispersion compensation , 1997 .

[32]  Drummond,et al.  Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[33]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[34]  S. Zienau,et al.  Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines , 1959, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  K Bergman,et al.  Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. , 1998, Optics letters.

[36]  W. Man,et al.  Quantum noise in reversible soliton logic , 1994 .

[37]  M. Werner Raman-induced photon correlations in optical fiber solitons , 1999 .

[38]  P. Drummond Quantum Theory of Fiber-Optics and Solitons , 1996 .

[39]  Perlmutter,et al.  Polarization properties of quasielastic light scattering in fused-silica optical fiber. , 1990, Physical review. B, Condensed matter.

[40]  P. D. Drummond,et al.  Quantum noise in optical fibers. II. Raman jitter in soliton communications , 1999, quant-ph/9912096.

[41]  Lai,et al.  General quantum theory of nonlinear optical-pulse propagation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  G. Leuchs,et al.  Photon number squeezing of spectrally filtered sub-picosecond optical solitons , 1997 .

[43]  R. Shelby,et al.  Time dependence of quantum fluctuations in solitons. , 1989, Optics letters.

[44]  B. Yurke,et al.  Solution to the initial value problem for the quantum nonlinear Schrödinger equation , 1989 .

[45]  Drummond,et al.  Squeezed quantum solitons and Raman noise. , 1991, Physical review letters.

[46]  K. Bergman,et al.  Amplitude-squeezed solitons from an asymmetric fiber interferometer. , 1998, Optics letters.

[47]  A. V. Luchnikov,et al.  Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers , 1992 .

[48]  Rosenbluh,et al.  Squeezed optical solitons. , 1991, Physical review letters.

[49]  H. Haus,et al.  Measurement of the Raman gain spectrum of optical fibers. , 1995, Optics letters.

[50]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[51]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.