Subwavelength patterning of alkylsiloxane monolayers via nonlinear processing with single femtosecond laser pulses

Femtosecond laser patterning of octadecylsiloxane monolayers on quartz glass at λ=800nm, τ<30fs, and ambient conditions has been investigated. Selective decomposition of the coating with single laser pulses at subwavelength resolution can be carried out over a wide range of fluences from 4.2 down to 3.1J∕cm2. In particular, at a 1∕e laser spot diameter of 1.8μm, structures with a width down to 250nm and below were fabricated. This opens up a facile route towards laser fabrication of transparent templates with chemical structures down into the sub-100-nm-regime.

[1]  A. Amirfazli,et al.  Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates , 2007 .

[2]  S. Franzka,et al.  Direct laser patterning of octadecylsiloxane monolayers on surface-oxidized silicon substrates: Indications for a photothermal excitation mechanism , 2006 .

[3]  Steffen Franzka,et al.  1D nanofabrication with a micrometer-sized laser spot. , 2006, Nano letters.

[4]  Sung-Hak Cho,et al.  Femtosecond-Laser-Coupled Near-Field Scanning Optical Microscopy Patterning Using Self-Assembled Monolayers , 2006 .

[5]  S. Franzka,et al.  Laser-assisted decomposition of alkylsiloxane monolayers at ambient conditions: rapid patterning below the diffraction limit , 2006 .

[6]  David N Reinhoudt,et al.  Engineering silicon oxide surfaces using self-assembled monolayers. , 2005, Angewandte Chemie.

[7]  Boris N. Chichkov,et al.  Direct-write subwavelength structuring with femtosecond laser pulses , 2005 .

[8]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[9]  Sung-Hak Cho,et al.  Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction , 2005 .

[10]  Robert L. Byer,et al.  Femtosecond laser ablation properties of borosilicate glass , 2004 .

[11]  Kazuya Saito,et al.  Absorption edge in silica glass , 2000 .

[12]  S. M. Wu,et al.  Dynamics of Atomic and Molecular Hydrogen Elimination from Small Alkanes Following 157-nm Excitation , 2000 .

[13]  Hiroyuki Sugimura,et al.  Micropatterning of Alkyl- and Fluoroalkylsilane Self-Assembled Monolayers Using Vacuum Ultraviolet Light , 2000 .

[14]  Razvan Stoian,et al.  Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation , 1999 .

[15]  F. Krausz,et al.  Incubation of laser ablation in fused silica with 5-fs pulses , 1999 .

[16]  Brent C. Stuart,et al.  Ultrashort-pulse laser machining of dielectric materials , 1999 .

[17]  Musahid Ahmed,et al.  Photolysis of tetramethylsilane near the absorption onset: mechanism and photophysics , 1995 .

[18]  Steffen Hardt,et al.  Microfluidic Technologies for Miniaturized Analysis Systems , 2007 .

[19]  Boris N. Chichkov,et al.  Maskless nonlinear lithography with femtosecond laser pulses , 2006 .

[20]  Laser Zentrum Hannover,et al.  Towards nanostructuring with femtosecond laser pulses , 2003 .

[21]  D. Bäuerle Laser Processing and Chemistry , 1996 .