Topological conjugacy of constant length substitution dynamical systems
暂无分享,去创建一个
[1] Bernard Host,et al. Homomorphismes entre systèmes dynamiques définis par substitutions , 1989, Ergodic Theory and Dynamical Systems.
[2] Michel Dekking. On the structure of Thue-Morse subwords, with an application to dynamical systems , 2014, Theor. Comput. Sci..
[3] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[4] F. Durand,et al. Cobham-Semenov theorem and Nd-subshifts , 2007, Theor. Comput. Sci..
[5] Reem Yassawi,et al. Computing automorphism groups of shifts using atypical equivalence classes , 2015, 1505.02482.
[6] Ethan M. Coven,et al. Necessary and sufficient conditions for a dynamical system to be topologically conjugate to a given substitution minimal system , 2012, 1209.2073.
[7] F. M. Dekking,et al. The spectrum of dynamical systems arising from substitutions of constant length , 1978 .
[8] Ethan M. Coven,et al. The structure of substitution minimal sets , 1971 .
[9] Ethan M. Coven,et al. Topological conjugacy to given constant length substitution minimal systems , 2014 .
[10] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[11] Ethan M. Coven,et al. A characterization of the Morse minimal set up to topological conjugacy , 2008, Ergodic Theory and Dynamical Systems.
[12] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .
[13] Ethan M. Coven. Endomorphisms of substitution minimal sets , 1971 .
[14] Jeffrey Shallit,et al. The Critical Exponent is Computable for Automatic Sequences , 2012, Int. J. Found. Comput. Sci..
[15] Jeffrey Shallit,et al. Enumeration and Decidable Properties of Automatic Sequences , 2011, Int. J. Found. Comput. Sci..
[16] Fabien Durand,et al. Constant-length substitutions and countable scrambled sets , 2008, 0808.0866.
[17] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[18] Isabelle Fagnot,et al. On factors of automatic words , 1997 .
[19] B. Mossé. Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .
[20] Fabien Durand,et al. Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.
[21] Ville Salo,et al. Block maps between primitive uniform and Pisot substitutions , 2013, Ergodic Theory and Dynamical Systems.
[22] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .