Topological conjugacy of constant length substitution dynamical systems

Primitive constant length substitutions generate minimal symbolic dynamical systems. In this article we present an algorithm which can produce the list of injective substitutions of the same length that generate topologically conjugate systems. We show that each conjugacy class contains infinitely substitutions which are not injective. As examples, the Toeplitz conjugacy class contains three injective substitutions (two on two symbols and one on three symbols), and the length two Thue-Morse conjugacy class contains twelve substitutions, among which are two on six symbols. Together, they constitute a list of all primitive substitutions of length two with infinite minimal systems which are factors of the Thue-Morse system.

[1]  Bernard Host,et al.  Homomorphismes entre systèmes dynamiques définis par substitutions , 1989, Ergodic Theory and Dynamical Systems.

[2]  Michel Dekking On the structure of Thue-Morse subwords, with an application to dynamical systems , 2014, Theor. Comput. Sci..

[3]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[4]  F. Durand,et al.  Cobham-Semenov theorem and Nd-subshifts , 2007, Theor. Comput. Sci..

[5]  Reem Yassawi,et al.  Computing automorphism groups of shifts using atypical equivalence classes , 2015, 1505.02482.

[6]  Ethan M. Coven,et al.  Necessary and sufficient conditions for a dynamical system to be topologically conjugate to a given substitution minimal system , 2012, 1209.2073.

[7]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[8]  Ethan M. Coven,et al.  The structure of substitution minimal sets , 1971 .

[9]  Ethan M. Coven,et al.  Topological conjugacy to given constant length substitution minimal systems , 2014 .

[10]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[11]  Ethan M. Coven,et al.  A characterization of the Morse minimal set up to topological conjugacy , 2008, Ergodic Theory and Dynamical Systems.

[12]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[13]  Ethan M. Coven Endomorphisms of substitution minimal sets , 1971 .

[14]  Jeffrey Shallit,et al.  The Critical Exponent is Computable for Automatic Sequences , 2012, Int. J. Found. Comput. Sci..

[15]  Jeffrey Shallit,et al.  Enumeration and Decidable Properties of Automatic Sequences , 2011, Int. J. Found. Comput. Sci..

[16]  Fabien Durand,et al.  Constant-length substitutions and countable scrambled sets , 2008, 0808.0866.

[17]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[18]  Isabelle Fagnot,et al.  On factors of automatic words , 1997 .

[19]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[20]  Fabien Durand,et al.  Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.

[21]  Ville Salo,et al.  Block maps between primitive uniform and Pisot substitutions , 2013, Ergodic Theory and Dynamical Systems.

[22]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .