Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion

Linearized inversion of surface seismic data for a model of the earth’s subsurface requires estimating the sensitivity of the seismic response to perturbations in the earth’s subsurface. This sensitivity, or Jacobian, matrix is usually quite expensive to estimate for all but the simplest model parameterizations. We exploit the numerical structure of the finite-element method, modern sparse matrix technology, and source–receiver reciprocity to develop an algorithm that explicitly calculates the Jacobian matrix at only the cost of a forward model solution. Furthermore, we show that we can achieve improved subsurface images using only one inversion iteration through proper scaling of the image by a diagonal approximation of the Hessian matrix, as predicted by the classical Gauss-Newton method. Our method is applicable to the full suite of wave scattering problems amenable to finiteelement forward modeling. We demonstrate our method through some simple 2-D synthetic examples.

[1]  N. Whitmore Iterative Depth Migration By Backward Time Propagation , 1983 .

[2]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[3]  Tatsuhiko Hara,et al.  Two efficient algorithms for iterative linearized inversion of seismic waveform data , 1993 .

[4]  E. Baysal,et al.  Reverse time migration , 1983 .

[5]  J. Virieux,et al.  Iterative asymptotic inversion in the acoustic approximation , 1992 .

[6]  Kurt J. Marfurt,et al.  The Future of Iterative Modeling in Geophysical Exploration , 1989 .

[7]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[8]  Jean Virieux,et al.  Two-Dimensional Asymptotic Iterative Elastic Inversion , 1991 .

[9]  Kurt J. Marfurt,et al.  Green's function implementation of common-offset, wave-equation migration , 1996 .

[10]  Samuel H. Gray,et al.  True-amplitude seismic migration: A comparison of three approaches , 1997 .

[11]  J. Z. Zhu,et al.  The finite element method , 1977 .

[12]  Guy Chavent,et al.  Determination of background velocities by multiple migration fitting , 1995 .

[13]  G. McMechan MIGRATION BY EXTRAPOLATION OF TIME‐DEPENDENT BOUNDARY VALUES* , 1983 .

[14]  P. Lailly,et al.  Marmousi, model and data , 1990 .

[15]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[16]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[17]  George A. McMechan,et al.  Determination of source parameters by wavefield extrapolation , 1982 .

[18]  Understanding CMP stacking hyperbola in terms of partial derivative wavefield , 1999 .

[19]  C. P. A. Wapenaar,et al.  A unified approach to acoustical reflection imaging. II: The inverse problem , 1993 .

[20]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[21]  J. Hagedoorn,et al.  A process of seismic reflection interpretation , 1954 .

[22]  Christof Stork,et al.  REFLECTION TOMOGRAPHY IN THE POSTMIGRATED DOMAIN , 1992 .

[23]  Piero Sguazzero,et al.  Migration of seismic data by phase-shift plus interpolation: Geophysics , 1984 .