Hutchinson-Lai's Conjecture for Bivariate Extreme Value Copulas

The class of bivariate extreme value copulas, which satisfies the monotone regression positive dependence property or equivalently the stochastic increasing property, is considered. A variational calculus proof of the Hutchinson-Lai conjecture about Kendall's tau and Spearman's rho for this class is provided.

[1]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[2]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[3]  James Durbin,et al.  Inversions and Rank Correlation Coefficients , 1951 .

[4]  J. Tiago de Oliveira Bivariate Models for Extremes; Statistical Decision , 1984 .

[5]  Josef Štěpán,et al.  Distributions with given marginals and moment problems , 1997 .

[6]  R. Nelsen An Introduction to Copulas , 1998 .

[7]  Martin Crowder,et al.  Continuous Bivariate Distributions, Emphasizing Applications , 1993 .

[8]  George Kimeldorf,et al.  One-parameter families of bivariate distributions with fixed marginals , 1975 .

[9]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[10]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  H. Joe Multivariate extreme value distributions , 1997 .

[12]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[13]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[14]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[15]  H. E. Daniels,et al.  Rank Correlation and Population Models , 1950 .

[16]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[17]  J. Tiago de Oliveira,et al.  Statistical Extremes and Applications , 1984 .

[18]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[19]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[20]  I. Olkin,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1983 .

[21]  Paul Deheuvels,et al.  Point processes and multivariate extreme values , 1983 .

[22]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[23]  J. Troutman Variational Calculus with Elementary Convexity , 1983 .

[24]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[25]  G. Kimeldorf,et al.  Positive dependence orderings , 1987 .

[26]  W. Kruskal Ordinal Measures of Association , 1958 .

[27]  Samuel Kotz,et al.  Advances in Probability Distributions with Given Marginals , 1991 .

[28]  E. Lehmann Some Concepts of Dependence , 1966 .

[29]  Bernard Dacorogna Introduction au calcul des variations , 1992 .

[30]  Roger B. Nelsen,et al.  Copulas and Association , 1991 .

[31]  Ana Isabel Garralda Guillem Structure de dépendance des lois de valeurs extrêmes bivariées , 2000 .

[32]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[33]  Rinya Takahashi,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1994, Journal of research of the National Institute of Standards and Technology.