An improved parallel contrast-aware halftoning

Digital image halftoning is a widely used technique. However, achieving high fidelity tone reproduction and structural preservation with low computational time cost remains a challenging problem. This paper presents a highly parallel algorithm to boost real-time application of serial structure-preserving error diffusion. The contrast-aware halftoning approach is one such technique with superior structure preservation, but it offers only a limited opportunity for graphics processing unit (GPU) acceleration. Our method integrates contrast-aware halftoning into a new parallelizable error-diffusion halftoning framework. To eliminate visually disturbing artifacts resulting from parallelization, we propose a novel multiple quantization model and space-filling curve to maintain tone consistency, blue-noise property, and structure consistency. Our GPU implementation on a commodity personal computer achieves a real-time performance for a moderately sized image. We demonstrate the high quality and performance of the proposed approach with a variety of examples, and provide comparisons with state-of-the-art methods.

[1]  Jan P. Allebach,et al.  Block interlaced pinwheel error diffusion , 2005, J. Electronic Imaging.

[2]  Robert E. Webber,et al.  Space diffusion: an improved parallel halftoning technique using space-filling curves , 1993, SIGGRAPH.

[3]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[4]  Luiz Velho,et al.  Digital halftoning with space filling curves , 1991, SIGGRAPH.

[5]  Jan P. Allebach,et al.  Tone-dependent error diffusion , 2004, IEEE Transactions on Image Processing.

[6]  J. M. Gerzso,et al.  Computer graphics and interactive techniques: 15th-17th July 1974. Boulder, Colorado, USA. Sponsored by the University of Colorado Computing Centre and ACM/SIGGRAPH , 1975, Comput. Aided Des..

[7]  Tien-Tsin Wong,et al.  Parallel structure-aware halftoning , 2012, Multimedia Tools and Applications.

[8]  Tien-Tsin Wong,et al.  Halftoning with Selective Precipitation and Adaptive Clustering , 1995 .

[9]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[10]  Donald E. Knuth,et al.  Digital halftones by dot diffusion , 1987, TOGS.

[11]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[12]  László Neumann,et al.  Global Contrast Factor - a New Approach to Image Contrast , 2005, CAe.

[13]  Thomas S. Huang,et al.  Image processing , 1971 .

[14]  Pheng-Ann Heng,et al.  Structure-aware halftoning , 2008, SIGGRAPH 2008.

[15]  Bingfeng Zhou,et al.  Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation , 2003, ACM Trans. Graph..

[16]  C. Billotet-Hoffmann,et al.  On the error diffusion technique for electronic halftoning , 1983 .

[17]  Jan P. Allebach,et al.  Model-based halftoning using direct binary search , 1992, Electronic Imaging.

[18]  Chun Chen,et al.  Block-based threshold modulation error diffusion , 2011, J. Electronic Imaging.

[19]  Li-Yi Wei Parallel Poisson disk sampling , 2008, SIGGRAPH 2008.

[20]  David L. Neuhoff,et al.  ONE-DIMENSIONAL LEAST-SQUARES MODEL-BASED HALFTONING , 1997 .

[21]  Reiner Eschbach,et al.  Error-diffusion algorithm with edge enhancement , 1991 .

[22]  Kevin J. Parker,et al.  Digital halftoning technique using a blue-noise mask , 1992 .

[23]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[24]  Jan P. Allebach,et al.  Memory efficient error diffusion , 2003, IS&T/SPIE Electronic Imaging.

[25]  Victor Ostromoukhov,et al.  Structure-aware error diffusion , 2009, SIGGRAPH 2009.

[26]  Hua Li,et al.  Contrast‐aware Halftoning , 2010, Comput. Graph. Forum.

[27]  Neal,et al.  Using Peano Curves for Bilevel Display of Continuous-Tone Images , 1982, IEEE Computer Graphics and Applications.

[28]  D.L. Neuhoff,et al.  Model-based Halftoning , 1991, Proceedings of the Seventh Workshop on Multidimensional Signal Processing.