Classification of hyperspectral images based on weighted DMPS

This paper presents a classification method for hyperspectral images utilizing Differential Morphological Profiles (DMPs) which permit to include in the analysis spatial information since they can provide an estimate of the size and contrast characteristics of the structures in an image. Due to the wide variety of objects present in a scene, the pixels belonging to the same semantic structure may not have homogeneous spatial and spectral features. In addition, instead of a single peak (which can be related to a measure of the scale), multiple local maxima and multiple responses are usually observed in the DMP. In order to handle such intra-class variability, class-specific weighting functions are employed in order to differently modulate the DMP values according to the different characteristics of the land cover types. In such way, it is possible to differentiate the behaviors of the DMP for each pixel in the image according to its semantic, providing an increase of the separability of the classes. At first, a DMP computed with opening by reconstruction (DMPO) and one with closing by reconstruction (DMPC) are derived on each of the first principle components extracted from the hyperspectral image. Then, both profiles are weighted by each class-specific weighting function and concatenated in a single data structure. The constructed feature vectors are considered by a random forest classifier.

[1]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[2]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Antonio J. Plaza,et al.  Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Jon Atli Benediktsson,et al.  Classification of remote sensing images from urban areas using a fuzzy possibilistic model , 2006, IEEE Geoscience and Remote Sensing Letters.

[5]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Jonathan Cheung-Wai Chan,et al.  Improved Classification of VHR Images of Urban Areas Using Directional Morphological Profiles , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Ilkay Ulusoy,et al.  Automatic segmentation of VHR images using type information of local structures acquired by mathematical morphology , 2011, Pattern Recognit. Lett..

[9]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..