Why do internet consumers block ads? New evidence from consumer opinion mining and sentiment analysis

The number of internet consumers who adopt ad-blocking is increasing rapidly all over the world. The purpose of this paper is to evaluate this phenomenon by: assembling the existing considerations and key theoretical aspects of the determinants of online ad-blocking; and by exploring the consumers’ beliefs and sentiments toward online ads and expected outcomes of ad-blocking behavior.,Data consist of 4,093 consumers’ opinions in response to the news items about ad-blocking, published by a leading news and technology website in the period 2010–2016. The unstructured data are analyzed using probabilistic topic modeling and sentiment analysis.,Five main topics are identified, unveiling the hidden structure of consumers’ beliefs. A sentiment analysis profiling the clustered opinions reveals that the opinions that are focused on the behavioral characteristics of ads express the strongest negative sentiment, while the opinions centered on the possibility to subscribe to an ad-free fee-financed website are characterized on average by a positive sentiment.,The findings provide useful insights for practitioners to create/adopt more acceptable ads that translate into less ad-blocking and improved internet surfing experience. It brings insights on the question of whether ad-free subscription websites have or do not have the potential to become a viable business opportunity.,The research: improves the current understanding of the determinants of ad-blocking by introducing a conceptual framework and testing it empirically; makes use of consumer-generated data on the internet; and implements novel techniques from the data mining literature.

[1]  Kurt Hornik,et al.  Text Mining Infrastructure in R , 2008 .

[2]  Jian Tang,et al.  Categorizing consumer behavioral responses and artifact design features: The case of online advertising , 2014, Information Systems Frontiers.

[3]  Avi Goldfarb,et al.  Online Display Advertising: Targeting and Obtrusiveness , 2011, Mark. Sci..

[4]  Lun Zhang,et al.  Breadth, depth, and speed: diffusion of advertising messages on microblogging sites , 2015, Internet Res..

[5]  Gary S. Becker,et al.  Accounting for Tastes , 1997 .

[6]  Joacim Tåg Paying to Remove Advertisements , 2009 .

[7]  X. Drèze,et al.  Internet advertising: Is anybody watching? , 2003 .

[8]  Andrew B. Whinston,et al.  Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion , 2012, Manag. Sci..

[9]  Andrea Everard,et al.  An Experimental Study of Antecedents and Consequences of Online Ad Intrusiveness , 2008, Int. J. Hum. Comput. Interact..

[10]  Stephen E. Robertson,et al.  Understanding inverse document frequency: on theoretical arguments for IDF , 2004, J. Documentation.

[11]  Jochen Wirtz,et al.  Causes and consequences of consumer online privacy concern , 2007 .

[12]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[13]  William G. J. Halfond,et al.  Truth in Advertising: The Hidden Cost of Mobile Ads for Software Developers , 2015, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

[14]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[15]  R. Lutz,et al.  THE FUNCTION OF FORMAT: Consumer Responses to Six On-line Advertising Formats , 2006 .

[16]  Nisheeth Shrivastava,et al.  Do not embarrass: re-examining user concerns for online tracking and advertising , 2013, SOUPS.

[17]  Vincent Cicchirillo,et al.  Advergaming and healthy eating involvement: How healthy eating inclinations impact processing of advergame content , 2016, Internet Res..

[18]  M. Wedel,et al.  Introduction to the Special Issue on Market Segmentation , 2002 .

[19]  F. Sultan,et al.  Are the Drivers and Role of Online Trust the Same for All Web Sites and Consumers? A Large-Scale Exploratory Empirical Study , 2005 .

[20]  P. Verlegh,et al.  Persuasion in advertising: when does it work, and when does it not? , 2015 .

[21]  Steve Vinoski,et al.  Node.js: Using JavaScript to Build High-Performance Network Programs , 2010, IEEE Internet Comput..

[22]  Margaret Jekanyika Matanda,et al.  Reinquiry into Advertising Avoidance on the Internet: A Conceptual Replication and Extension , 2016 .

[23]  Yung Kyun Choi,et al.  E-WOM messaging on social media: Social ties, temporal distance, and message concreteness , 2017, Internet Res..

[24]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[25]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[26]  Jens Grossklags,et al.  Ad-blocking Games: Monetizing Online Content Under the Threat of Ad Avoidance , 2012, WEIS.

[27]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[28]  David H. Reiley,et al.  Online ads and offline sales: measuring the effect of retail advertising via a controlled experiment on Yahoo! , 2014 .

[29]  S. Chaiken,et al.  Attitude structure and function. , 1998 .

[30]  May O. Lwin,et al.  The privacy dyad: Antecedents of promotion- and prevention-focused online privacy behaviors and the mediating role of trust and privacy concern , 2016, Internet Res..

[31]  R. W. Rogers,et al.  A Protection Motivation Theory of Fear Appeals and Attitude Change1. , 1975, The Journal of psychology.

[32]  Kevin Lane Keller,et al.  Brand Equity Management in a Multichannel, Multimedia Retail Environment , 2010 .

[33]  Simon P. Anderson,et al.  Platform Siphoning: Ad-Avoidance and Media Content , 2010 .

[34]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[35]  Etienne Barnard,et al.  Evaluating topic models with stability , 2008 .

[36]  Pavel Kireyev,et al.  Do display ads influence search? Attribution and dynamics in online advertising , 2016 .

[37]  Anthony J. Hornof,et al.  High-cost banner blindness: Ads increase perceived workload, hinder visual search, and are forgotten , 2005, TCHI.

[38]  Avi Goldfarb,et al.  Search Engine Advertising: Channel Substitution when Pricing Ads to Context , 2010, Manag. Sci..

[39]  Michael T. Elliott,et al.  Predictors of Advertising Avoidance in Print and Broadcast Media , 1997 .

[40]  Chang-Hoan Cho,et al.  WHY DO PEOPLE AVOID ADVERTISING ON THE INTERNET? , 2004 .

[41]  Kar Yan Tam,et al.  How do Web users respond to non-banner-ads animation? The effects of task type and user experience , 2007 .

[42]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[43]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[44]  R. Emerson Power-Dependence Relations , 1962, Power in Modern Societies.

[45]  Hairong Li,et al.  Forced Exposure and Psychological Reactance: Antecedents and Consequences of the Perceived Intrusiveness of Pop-Up Ads , 2002 .

[46]  Tillmann Neben,et al.  Ad Intrusiveness, Loss of Control, and Stress: A Psychophysiological Study , 2015, ICIS.

[47]  I. Ajzen,et al.  Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research , 1977 .

[48]  Miriam Muñoz-Expósito,et al.  How to measure engagement in Twitter: advancing a metric , 2017, Internet Res..

[49]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[50]  Kar Yan Tam,et al.  Does Animation Attract Online Users' Attention? The Effects of Flash on Information Search Performance and Perceptions , 2004, Inf. Syst. Res..

[51]  Mariko Morimoto,et al.  Stay Away From Me , 2012 .

[52]  Louisa Ha,et al.  An integrated model of advertising clutter in offline and online media , 2008 .

[53]  Adam D. Galinsky,et al.  Power and consumer behavior: How power shapes who and what consumers value , 2012 .

[54]  Seounmi Youn Determinants of Online Privacy Concern and Its Influence on Privacy Protection Behaviors Among Young Adolescents , 2009 .

[55]  Charles F. Hofacker,et al.  Consumer Power: Evolution in the Digital Age , 2013 .

[56]  Xiang Fang,et al.  An examination of different explanations for the mere exposure effect , 2007 .

[57]  J. Joseph Cronin,et al.  Discrimination Vs. Avoidance: “Zipping” of Television Commercials , 1992 .

[58]  Radha Appan,et al.  The Potential Implications of Web-Based Marketing Communications for Consumers’ Implicit and Explicit Brand Attitudes: A Call for Research , 2010 .

[59]  Rodney Graeme Duffett,et al.  Facebook advertising's influence on intention-to-purchase and purchase amongst Millennials , 2015, Internet Res..

[60]  Kurt Hornik,et al.  topicmodels : An R Package for Fitting Topic Models , 2016 .

[61]  Tao Zhou,et al.  Understanding location-based services users' privacy concern: An elaboration likelihood model perspective , 2017, Internet Res..

[62]  R. Preston McAfee,et al.  The Economic and Cognitive Costs of Annoying Display Advertisements , 2014 .

[63]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[64]  P. K. Kannan,et al.  Attributing Conversions in a Multichannel Online Marketing Environment: An Empirical Model and a Field Experiment , 2014 .

[65]  S. Sreejesh,et al.  Effect of nature of the game on ad-persuasion in online gaming context: Moderating roles of game-product congruence and consumer's need for cognition , 2017, Internet Res..

[66]  Sriram Kalyanaraman,et al.  AROUSAL, MEMORY, AND IMPRESSION-FORMATION EFFECTS OF ANIMATION SPEED IN WEB ADVERTISING , 2004 .

[67]  Michael R. Lyu,et al.  IntelliAd Understanding In-APP Ad Costs From Users Perspective , 2016, ArXiv.