High‐Speed and Low‐Energy Nitride Memristors

High‐performance memristors based on AlN films have been demonstrated, which exhibit ultrafast ON/OFF switching times (≈85 ps for microdevices with waveguide) and relatively low switching current (≈15 μA for 50 nm devices). Physical characterizations are carried out to understand the device switching mechanism, and rationalize speed and energy performance. The formation of an Al‐rich conduction channel through the AlN layer is revealed. The motion of positively charged nitrogen vacancies is likely responsible for the observed switching.

[1]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.

[2]  Z. I. Kertesz,et al.  Handbook of Chemistry , 1944 .

[3]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[4]  R. Nieminen,et al.  Ab initio study of oxygen point defects in GaAs, GaN, and AlN. , 1996, Physical review. B, Condensed matter.

[5]  C. Colliex,et al.  EELS investigation of the electron conduction-band states in wurtzite AlN and oxygen-doped AlN(O) , 1998 .

[6]  Theory of doping and defects in III–V nitrides , 1998, cond-mat/9810385.

[7]  I. Gorczyca,et al.  Theory of point defects in GaN, AlN, and BN: Relaxation and pressure effects , 1999 .

[8]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[9]  C. Stampfl,et al.  Theoretical investigation of native defects, impurities, and complexes in aluminum nitride , 2002 .

[10]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[11]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[12]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[13]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[14]  Winfried W. Wilcke,et al.  Storage-class memory: The next storage system technology , 2008, IBM J. Res. Dev..

[15]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[16]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[17]  C. N. Lau,et al.  Force modulation of tunnel gaps in metal oxide memristive nanoswitches , 2009 .

[18]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[19]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[20]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[21]  Tae Geun Kim,et al.  Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells , 2010 .

[22]  W. E. Hoke,et al.  AlGaN/GaN HEMT With 300-GHz $f_{\max}$ , 2010 .

[23]  Yuchao Yang,et al.  Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device , 2010 .

[24]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[25]  Yong-ning Zhou,et al.  Reproducible resistive‐switching behavior in copper‐nitride thin film prepared by plasma‐immersion ion implantation , 2011 .

[26]  James A. Bain,et al.  Computational investigations into the operating window for memristive devices based on homogeneous ionic motion , 2011 .

[27]  Hyunsang Hwang,et al.  Nonlinear current-voltage behavior of the isolated resistive switching filamentary channels in CuC nanolayer , 2011 .

[28]  Tae Geun Kim,et al.  Stable Bipolar Resistive Switching Characteristics and Resistive Switching Mechanisms Observed in Aluminum Nitride-based ReRAM Devices , 2011, IEEE Transactions on Electron Devices.

[29]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[30]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[31]  Tae Geun Kim,et al.  Improved reliability of Au/Si3N4/Ti resistive switching memory cells due to a hydrogen postannealing treatment , 2011 .

[32]  J. Yang,et al.  Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High‐Performance Memristor , 2011, Advanced materials.

[33]  C. Hwang,et al.  Unipolar resistive switching characteristics of pnictogen oxide films: Case study of Sb2O5 , 2012 .

[34]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[35]  M. Marinella,et al.  Resistive switching in aluminum nitride , 2012, 70th Device Research Conference.

[36]  N. Biyikli,et al.  Structural properties of AlN films deposited by plasma‐enhanced atomic layer deposition at different growth temperatures , 2012 .

[37]  Necmi Biyikli,et al.  Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition , 2012 .

[38]  Fei Zeng,et al.  Effect of electrode materials on AlN-based bipolar and complementary resistive switching. , 2013, ACS applied materials & interfaces.

[39]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[40]  Kate J. Norris,et al.  Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. , 2013, Nano letters.

[41]  Tae Geun Kim,et al.  Effect of embedded metal nanocrystals on the resistive switching characteristics in NiN-based resistive random access memory cells , 2014 .

[42]  S. Menzel,et al.  Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process , 2016 .