Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves

[1]  R. Masland Maturation of function in the developing rabbit retina , 1977, The Journal of comparative neurology.

[2]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[3]  Richard H. Masland,et al.  The cholinergic amacrine cell , 1986, Trends in Neurosciences.

[4]  J. Stone,et al.  Synaptogenesis in the retina of the cat , 1986, Brain Research.

[5]  P. Rakić,et al.  Synaptogenesis in the primate retina proceeds from the ganglion cells towards the photoreceptors. , 1987, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[6]  T. Millar,et al.  Cholinergic amacrine cells in the rabbit retina synapse onto other cholinergic amacrine cells , 1987, Neuroscience Letters.

[7]  H. Wässle,et al.  Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. Shatz,et al.  Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  L. Hersh,et al.  Synaptic organization of cholinergic amacrine cells in the rhesus monkey retina , 1988, The Journal of comparative neurology.

[10]  H. Young,et al.  GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina , 1988, Brain Research.

[11]  R. O. L. Wong,et al.  Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina , 1989, The Journal of comparative neurology.

[12]  J. Dann Cholinergic amacrine cells in the developing cat retina , 1989, The Journal of comparative neurology.

[13]  D. Mastronarde Correlated firing of retinal ganglion cells , 1989, Trends in Neurosciences.

[14]  J. Stone,et al.  Ontogeny of catecholaminergic and cholinergic cell distributions in the cat's retina , 1989, The Journal of comparative neurology.

[15]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[16]  L. Maffei,et al.  Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  E. V. Famiglietti,et al.  Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction , 1991, The Journal of comparative neurology.

[18]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[19]  H. Cline Activity-dependent plasticity in the visual systems of frogs and fish , 1991, Trends in Neurosciences.

[20]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[22]  Evidence for the Action of Endogenous Adenosine in the Rabbit Retina: Modulation of the Light‐Evoked Release of Acetylcholine , 1992, Journal of neurochemistry.

[23]  L. Chalupa,et al.  Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina , 1993, Nature.

[24]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[25]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[26]  M Sur,et al.  Competitive interactions influencing the development of retinal axonal arbors in cat lateral geniculate nucleus. , 1993, Physiological reviews.

[27]  Richard Mooney,et al.  Enhancement of transmission at the developing retinogeniculate synapse , 1993, Neuron.

[28]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[29]  J C Smith,et al.  Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. , 1994, Journal of neurophysiology.

[30]  D. Kleinfeld,et al.  Waves and stimulus-modulated dynamics in an oscillating olfactory network. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  N. Grzywacz,et al.  Model for the pharmacological basis of spontaneous synchronous activity in developing retinas , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  H. Karten,et al.  Differential development of α‐bungarotoxin‐sensitive and α‐bungarotoxin‐insensitive nicotinic acetylcholine receptors in the chick retina , 1994, The Journal of comparative neurology.

[33]  R. Wong,et al.  Neuronal coupling in the developing mammalian retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  D. Kleinfeld,et al.  Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study. , 1994, Journal of neurophysiology.

[35]  C. Shatz,et al.  Early functional neural networks in the developing retina , 1995, Nature.

[36]  L. Role,et al.  Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. , 1995, Annual review of physiology.

[37]  T. Velte,et al.  Dendritic integration in ganglion cells of the mudpuppy retina , 1995, Visual Neuroscience.

[38]  G. Fain,et al.  Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  W. G. Owen,et al.  Similar effects of carbachol and dopamine on neurons in the distal retina of the tiger salamander , 1995, Visual Neuroscience.

[40]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[41]  R. Yuste,et al.  Neuronal domains in developing neocortex: Mechanisms of coactivation , 1995, Neuron.

[42]  C. Stevens,et al.  Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. B. Hutchins,et al.  Acetylcholinesterase in the developing ferret retina. , 1995, Experimental eye research.

[44]  I. Parker,et al.  Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. , 1995, The Journal of physiology.

[45]  H. Wässle,et al.  Receptive Field Properties of Starburst Cholinergic Amacrine Cells in the Rabbit Retina , 1995, The European journal of neuroscience.

[46]  R. Wong,et al.  Changing Patterns of Spontaneous Bursting Activity of On and Off Retinal Ganglion Cells during Development , 1996, Neuron.

[47]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[48]  Anna A Penn,et al.  Thalamic Relay of Spontaneous Retinal Activity Prior to Vision , 1996, Neuron.

[49]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[50]  N. Grzywacz,et al.  Influence of spontaneous activity and visual experience on developing retinal receptive fields , 1996, Current Biology.

[51]  W. Baldridge Optical Recordings of the Effects of Cholinergic Ligands on Neurons in the Ganglion Cell Layer of Mammalian Retina , 1996, The Journal of Neuroscience.

[52]  Z. J. Zhou,et al.  Starburst amacrine cells change from spiking to nonspiking neurons during retinal development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Andrew C. Charles,et al.  Intercellular Calcium Waves in Neurons , 1996, Molecular and Cellular Neuroscience.

[54]  R. Masland,et al.  Responses to light of starburst amacrine cells. , 1996, Journal of neurophysiology.

[55]  F. Werblin,et al.  Requirement for Cholinergic Synaptic Transmission in the Propagation of Spontaneous Retinal Waves , 1996, Science.

[56]  C. Shatz Emergence of order in visual system development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.