Numerical Study on a Heat-Driven Thermoacoustic Cryocooler Operating Near Liquid Helium Temperature Ranges

[1]  Kai Wang,et al.  The effect of the aftercooler on the regenerator temperature non-uniformity in a high-capacity pulse tube cryocooler , 2022, Applied Thermal Engineering.

[2]  S. Hochgreb,et al.  Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler , 2022, Applied Energy.

[3]  Zhanghua Wu,et al.  Study of a gas-liquid-coupled heat-driven room-temperature thermoacoustic refrigerator with different working gases , 2021, Energy Conversion and Management.

[4]  B. Mace,et al.  Multi-physics coupling in thermoacoustic devices: A review , 2021 .

[5]  S. Hochgreb,et al.  A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery , 2021, Energy.

[6]  Ercang Luo,et al.  Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery , 2020, Applied Energy.

[7]  Z. Gan,et al.  Thermodynamic analysis of the working states of the Stirling/pulse tube hybrid cryocooler , 2020 .

[8]  Brian R. Mace,et al.  Modelling and analysis of a thermoacoustic-piezoelectric energy harvester , 2019, Applied Thermal Engineering.

[9]  K. Tang,et al.  Performance of a looped thermoacoustic engine with multiple loads capable of utilizing heat source below 200 °C , 2019, Applied Thermal Engineering.

[10]  Huizhi Wang,et al.  A novel looped low-temperature heat-driven thermoacoustic refrigerator operating in room temperature range , 2019, Energy Procedia.

[11]  Houda Hachem,et al.  Technological challenges and optimization efforts of the Stirling machine: A review , 2018, Energy Conversion and Management.

[12]  Wang Junjie,et al.  Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler. , 2018 .

[13]  Shinya Hasegawa,et al.  Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine. , 2017 .

[14]  R. Radebaugh,et al.  Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors , 2017, IEEE Transactions on Applied Superconductivity.

[15]  Ercang Luo,et al.  A looped three-stage cascade traveling-wave thermoacoustically-driven cryocooler , 2016 .

[16]  Ercang Luo,et al.  An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas , 2016 .

[17]  Xiaoqing Zhang,et al.  A multi-stage travelling wave thermoacoustic engine driven refrigerator and operation features for utilizing low grade energy , 2016 .

[18]  Peter J. Shirron,et al.  Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators , 2014 .

[19]  Ercang Luo,et al.  Numerical simulation and experimental investigation of a gas‐liquid, double‐acting traveling‐wave thermoacoustic heat engine , 2013 .

[20]  A. Okabayashi,et al.  Test results after refurbish of cryogenic system for smiles , 2010 .

[21]  Tao Jin,et al.  Thermoacoustically driven pulse tube cooler below 60 K , 2007 .

[22]  Ercang Luo,et al.  A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature , 2007 .

[23]  W. Dai,et al.  A Heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature , 2005 .

[24]  Guobang Chen,et al.  Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator , 2005 .

[25]  Scott Backhaus,et al.  Operation of Thermoacoustic Stirling Heat Engine Driven Large Multiple Pulse Tube Refrigerators , 2005 .

[26]  Gregory W. Swift,et al.  A LOADED THERMOACOUSTIC ENGINE , 1995 .

[27]  David Gedeon,et al.  Sage: Object-Oriented Software for Cryocooler Design , 1995 .

[28]  Y. Matsubara,et al.  Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K , 1994 .

[29]  W. E. Gifford,et al.  Pulse-Tube Refrigeration , 1964 .