Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions

This study proposes a mixed logit model with multivariate nonparametric finite mixture distributions. The support of the distribution is specified as a high-dimensional grid over the coefficient space, with equal or unequal intervals between successive points along the same dimension; the location of each point on the grid and the probability mass at that point are model parameters that need to be estimated. The framework does not require the analyst to specify the shape of the distribution prior to model estimation, but can approximate any multivariate probability distribution function to any arbitrary degree of accuracy. The grid with unequal intervals, in particular, offers greater flexibility than existing multivariate nonparametric specifications, while requiring the estimation of a small number of additional parameters. An expectation maximization algorithm is developed for the estimation of these models. Multiple synthetic datasets and a case study on travel mode choice behavior are used to demonstrate the value of the model framework and estimation algorithm. Compared to extant models that incorporate random taste heterogeneity through continuous mixture distributions, the proposed model provides better out-of-sample predictive ability. Findings reveal significant differences in willingness to pay measures between the proposed model and extant specifications. The case study further demonstrates the ability of the proposed model to endogenously recover patterns of attribute non-attendance and choice set formation.

[1]  David A. Hensher,et al.  Modelling attribute non-attendance in choice experiments for rural landscape valuation , 2009 .

[2]  Mevin B. Hooten,et al.  A guide to Bayesian model selection for ecologists , 2015 .

[3]  Michael P. Keane,et al.  A model of health plan choice:: Inferring preferences and perceptions from a combination of revealed preference and attitudinal data , 1998 .

[4]  Chandra R. Bhat,et al.  An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel , 1997, Transp. Sci..

[5]  Michel Bierlaire,et al.  PythonBiogeme: a short introduction , 2016 .

[6]  Nada Wasi,et al.  COMPARING ALTERNATIVE MODELS OF HETEROGENEITY IN CONSUMER CHOICE BEHAVIOR , 2012 .

[7]  H. Williams,et al.  Behavioural theories of dispersion and the mis-specification of travel demand models☆ , 1982 .

[8]  Prateek Bansal,et al.  Extending the logit-mixed logit model for a combination of random and fixed parameters , 2017, Journal of Choice Modelling.

[9]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[10]  Stephane Hess,et al.  It’s not that I don’t care, I just don’t care very much: confounding between attribute non-attendance and taste heterogeneity , 2013 .

[11]  Juan de Dios Ortúzar,et al.  On the Use of Mixed RP/SP Models in Prediction: Accounting for Systematic and Random Taste Heterogeneity , 2011, Transp. Sci..

[12]  E. El-Darzi,et al.  Analysis of stopping criteria for the EM algorithm in the context of patient grouping according to length of stay , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[13]  Peter E. Rossi,et al.  Marketing models of consumer heterogeneity , 1998 .

[14]  Jorge Nocedal,et al.  Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” , 2011, TOMS.

[15]  Michel Bierlaire,et al.  A practical test for the choice of mixing distribution in discrete choice models , 2005 .

[16]  Paul A. Ruud,et al.  Extensions of estimation methods using the EM algorithm , 1991 .

[17]  Jan de Leeuw,et al.  An Introduction to the Special Volume on "Psychometrics in R" , 2007 .

[18]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[19]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[20]  M. Harding,et al.  A Bayesian mixed logit-probit model for multinomial choice , 2008 .

[21]  K. Boyle,et al.  A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model , 2015 .

[22]  John M. Rose,et al.  Can scale and coefficient heterogeneity be separated in random coefficients models? , 2012 .

[23]  Jeremy T. Fox,et al.  The Random Coefficients Logit Model is Identified , 2009 .

[24]  David A. Hensher,et al.  Non-attendance to attributes in environmental choice analysis: a latent class specification , 2011 .

[25]  Mogens Fosgerau,et al.  Investigating the distribution of the value of travel time savings , 2006 .

[26]  K. Axhausen,et al.  Evidence on the distribution of values of travel time savings from a six-week diary , 2006 .

[27]  D. Bolduc,et al.  Sequential and Simultaneous Estimation of Hybrid Discrete Choice Models , 2010 .

[28]  Gary Chamberlain,et al.  Analysis of Covariance with Qualitative Data , 1979 .

[29]  Denzil G. Fiebig,et al.  The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity , 2010, Mark. Sci..

[30]  Robert L. Hicks,et al.  Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach , 2010 .

[31]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[32]  Chandra R. Bhat,et al.  Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling , 2000, Transp. Sci..

[33]  Stefan Lindhard Mabit,et al.  Easy and flexible mixture distributions , 2013 .

[34]  Philippe L. Toint,et al.  Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations , 2010, Transp. Sci..

[35]  Chandra R. Bhat,et al.  A New Approach to Specify and Estimate Non-normally Mixed Multinomial Probit Models , 2012 .

[36]  Chandra R. Bhat,et al.  The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models , 2011 .

[37]  Jon D. McAuliffe,et al.  Variational Inference for Large-Scale Models of Discrete Choice , 2007, 0712.2526.

[38]  Michel Wedel,et al.  Discrete and Continuous Representations of Unobserved Heterogeneity in Choice Modeling , 1999 .

[39]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[40]  Chandra R. Bhat,et al.  A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions , 2017 .

[41]  Joffre Swait,et al.  Distinguishing taste variation from error structure in discrete choice data , 2000 .

[42]  David A. Hensher,et al.  A latent class model for discrete choice analysis: contrasts with mixed logit , 2003 .

[43]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[44]  Joan L. Walker,et al.  Taste heterogeneity, correlation and elasticities in latent class choice models , 2009 .

[45]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[46]  David A. Hensher,et al.  Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model , 2010 .

[47]  Stephane Hess,et al.  On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice , 2006 .

[48]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[49]  Stephane Hess,et al.  Correlation and scale in mixed logit models , 2017 .

[50]  John M. Rose,et al.  Effects of distributional assumptions on conditional estimates from mixed logit models , 2007 .

[51]  Cristian Angelo Guevara,et al.  A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance-covariance matrix , 2012 .

[52]  Stephane Hess,et al.  Competing methods for representing random taste heterogeneity in discrete choice models , 2006 .

[53]  D. McFadden The Choice Theory Approach to Market Research , 1986 .

[54]  John M. Rose,et al.  Accounting for heterogeneity in the variance of unobserved effects in mixed logit models , 2006 .

[55]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[56]  F. Koppelman,et al.  Comparison of continuous and discrete representations of unobserved heterogeneity in logit models , 2014 .

[57]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[58]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[59]  Kenneth Train,et al.  Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps , 2008 .

[60]  Jeremy T. Fox,et al.  Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients , 2007 .

[61]  Kenneth Train,et al.  Mixed Logit with Bounded Distributions of Correlated Partworths , 2005 .

[62]  Moshe Ben-Akiva,et al.  Process and context in choice models , 2012, Marketing Letters.

[63]  Kenneth Train,et al.  Mixed logit with a flexible mixing distribution , 2016 .

[64]  Patricia L. Mokhtarian,et al.  When is getting there half the fun? Modeling the liking for travel - eScholarship , 2005 .

[65]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[66]  Joan L. Walker,et al.  Integration of Choice and Latent Variable Models , 1999 .

[67]  Kenneth Train,et al.  EM algorithms for nonparametric estimation of mixing distributions , 2008 .

[68]  David A. Hensher,et al.  Does scale heterogeneity across individuals matter? An empirical assessment of alternative logit models , 2010 .

[69]  Rick L. Andrews,et al.  An Empirical Comparison of Logit Choice Models with Discrete versus Continuous Representations of Heterogeneity , 2002 .

[70]  Moshe Ben-Akiva,et al.  Estimation of travel choice models with randomly distributed values of time , 1992 .

[71]  Christophe Biernacki,et al.  Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..