DYNAMICO, an icosahedral hydrostatic dynamical core designed for consistency and versatility

DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility Thomas Dubos1, Sarvesh Dubey2, Marine Tort1, Rashmi Mittal3, Yann Meurdesoif4, and Frédéric Hourdin5 1IPSL/Lab. de Météorologie Dynamique, École Polytechnique, Palaiseau, France 2Dept. of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 3IBM India Research Laboratory, New Delhi, India 4IPSL/Lab. de Sciences du Climat et de l’Environnement, CEA-CNRS, Gif-sur-Yvette, France 5IPSL/Lab. de Météorologie Dynamique, CNRS UPMC, Paris, France

[1]  Thomas Dubos,et al.  Dynamically consistent shallow‐atmosphere equations with a complete Coriolis force , 2013 .

[2]  Jerrold E. Marsden,et al.  The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.

[3]  R. Easter Two Modified Versions of Bott's Positive-Definite Numerical Advection Scheme , 1993 .

[4]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[5]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[6]  Colin J. Cotter,et al.  A Framework for Mimetic Discretization of the Rotating Shallow-Water Equations on Arbitrary Polygonal Grids , 2012, SIAM J. Sci. Comput..

[7]  Mark A. Taylor,et al.  A STANDARD TEST CASE SUITE FOR TWO-DIMENSIONAL LINEAR TRANSPORT ON THE SPHERE: RESULTS FROM A COLLECTION OF STATE-OF-THE-ART SCHEMES , 2013 .

[8]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[9]  Hirofumi Tomita,et al.  Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .

[10]  James Kent,et al.  Dynamical core model intercomparison project: Tracer transport test cases , 2014 .

[11]  P. Ripa Conservation laws for primitive equations models with inhomogeneous layers , 1993 .

[12]  Vladimir Igorevich Arnold,et al.  Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid , 1965 .

[13]  H. Miura An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal–Pentagonal Grids , 2007 .

[14]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[15]  Thomas Dubos,et al.  Held‐Suarez simulations with the Community Atmosphere Model Spectral Element (CAM‐SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates , 2014 .

[16]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[17]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[18]  Frédéric Hourdin,et al.  On the inter-comparison of two tracer transport schemes on icosahedral grids , 2015 .

[19]  Günther Zängl,et al.  The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version , 2013 .

[20]  Almut Gassmann Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations , 2011, J. Comput. Phys..

[21]  J. Thuburn,et al.  Numerical wave propagation on the hexagonal C-grid , 2008, J. Comput. Phys..

[22]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[23]  Almut Gassmann,et al.  A global hexagonal C‐grid non‐hydrostatic dynamical core (ICON‐IAP) designed for energetic consistency , 2013 .

[24]  F. Bouchut,et al.  Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography , 2014, Journal of Fluid Mechanics.

[25]  D. Williamson,et al.  A baroclinic instability test case for atmospheric model dynamical cores , 2006 .

[26]  M. Giorgetta,et al.  Icosahedral Shallow Water Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters , 2009 .

[27]  Rick Salmon Poisson-Bracket Approach to the Construction of Energy- and Potential-Enstrophy- Conserving Algorithms for the Shallow-Water Equations , 2004 .

[28]  Mark A. Taylor,et al.  A standard test case suite for two-dimensional linear transport on the sphere , 2012 .

[29]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[30]  Thomas Dubos,et al.  Usual Approximations to the Equations of Atmospheric Motion: A Variational Perspective , 2014 .

[31]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[32]  Christiane Jablonowski,et al.  Rotated Versions of the Jablonowski Steady‐State and Baroclinic Wave Test Cases: A Dynamical Core Intercomparison , 2010 .

[33]  Frédéric Hourdin,et al.  The Use of Finite-Volume Methods for Atmospheric Advection of Trace Species. Part I: Test of Various Formulations in a General Circulation Model , 1999 .

[34]  William C. Skamarock,et al.  Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..

[35]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[36]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[37]  Onno Bokhove,et al.  Eulerian variational principles for stratified hydrostatic equations , 2002 .

[38]  R. Sadourny The Dynamics of Finite-Difference Models of the Shallow-Water Equations , 1975 .

[39]  William C. Skamarock,et al.  A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..

[40]  T. Ringler,et al.  Analysis of Discrete Shallow-Water Models on Geodesic Delaunay Grids with C-Type Staggering , 2005 .

[41]  Rémi Abgrall,et al.  Physics-compatible numerical methods , 2014, J. Comput. Phys..

[42]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[43]  Frédéric Hourdin,et al.  Superrotation of Venus' atmosphere analyzed with a full general circulation model , 2010 .

[44]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[45]  Colin J. Cotter,et al.  A finite element exterior calculus framework for the rotating shallow-water equations , 2012, J. Comput. Phys..

[46]  R. Practical use of Hamilton ’ s principle , 2005 .

[47]  William G. Gray,et al.  One step integration methods with maximum stability regions , 1984 .

[48]  Christiane Jablonowski,et al.  Angular momentum budget in General Circulation Models of superrotating atmospheres: A critical diagnostic , 2012 .

[49]  Hiroaki Miura,et al.  A Comparison of Grid Quality of Optimized Spherical Hexagonal–Pentagonal Geodesic Grids , 2005 .

[50]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[51]  John M. Gary,et al.  Estimate of Truncation Error in Transformed Coordinate, Primitive Equation Atmospheric Models , 1973 .

[52]  Qiang Du,et al.  Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations , 2006, SIAM J. Numer. Anal..

[53]  William C. Skamarock,et al.  Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration , 2011 .

[54]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[55]  Colin J. Cotter,et al.  A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal-icosahedral and cubed-sphere grids , 2013 .

[56]  William Skamarock,et al.  Monotonic Limiters for a Second-Order Finite-Volume Advection Scheme Using Icosahedral-Hexagonal Meshes , 2010 .

[57]  Colin J. Cotter,et al.  Computational Modes and Grid Imprinting on Five Quasi-Uniform Spherical C Grids , 2012 .

[58]  William G. Gray,et al.  One step integration methods of third-fourth order accuracy with large hyperbolic stability limits , 1984 .

[59]  Thomas Dubos,et al.  Equations of Atmospheric Motion in Non-Eulerian Vertical Coordinates: Vector-Invariant Form and Quasi-Hamiltonian Formulation , 2014 .

[60]  V. I. Arnold Conditions for nonlinear stability of plane steady curvilinear flows of an ideal fluid , 1965 .

[61]  Mark A. Taylor,et al.  A compatible and conservative spectral element method on unstructured grids , 2010, J. Comput. Phys..

[62]  Charles S. Peskin,et al.  On the construction of the Voronoi mesh on a sphere , 1985 .

[63]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[64]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[65]  Thomas Dubos,et al.  Energy‐conserving finite‐difference schemes for quasi‐hydrostatic equations , 2015 .

[66]  A. White,et al.  Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force , 1995 .

[67]  R. Sadourny,et al.  Compressible Model Flows on the Sphere. , 1975 .

[68]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .