High strain rate properties of metals and alloys

Abstract The high strain rate dependence of the flow stress of metals and alloys is described from a dislocation mechanics viewpoint over a range beginning from conventional tension/compression testing through split Hopkinson pressure bar (SHPB) measurements to Charpy pendulum and Taylor solid cylinder impact tests and shock loading or isentropic compression experiment (ICE) results. Single crystal and polycrystal measurements are referenced in relation to influences of the crystal lattice structures and nanopolycrystal material behaviours. For body centred cubic (bcc) metals, the strain rate sensitivity (SRS) is in the yield stress dependence as compared with the face centred cubic (fcc) case of being in the strain hardening property. An important consequence is that an opposite ductility influence occurs for the tensile maximum load point strain that decreases with strain rate for the bcc case and increases with strain rate for the fcc case. Different hexagonal close packed (hcp) metals are shown to follow either the bcc or fcc case. A higher SRS for certain fcc and hcp nanopolycrystals is explained by extrapolation from conventional grain sizes of an inverse square root of grain size dependence of the reciprocal activation volume determined on a thermal activation strain rate analysis (TASRA) basis. At the highest strain rates, additional deformation features enter, such as deformation twinning, adiabatic shear banding and very importantly, for shock induced plasticity, transition from plastic flow that is controlled by the mobility of the resident dislocation density to plasticity that is controlled by dislocation or twin generations at the shock front. The shock description is compared with the very different high rate shockless ICE type loading that occurs over nanoseconds and leads to higher compressive strength levels because of dislocation drag resistance coming into play for the originally resident mobile dislocation density. Among the high strain rate property, concerns are the evaluation of ductile to brittle transition behaviours for bcc and related metals and also, projectile/target performances in ballistic impact tests, including punching. Very complete metallographic and electron microscope observations have been reported in a number of the high rate deformation investigations.

[1]  Ting Zhu,et al.  Temperature and strain-rate dependence of surface dislocation nucleation. , 2008, Physical review letters.

[2]  Bertram Hopkinson,et al.  The Effects of Momentary Stresses in Metals , 1904, Proceedings of the Royal Society of London.

[3]  S. Nemat-Nasser,et al.  Experimental/ computational evaluation of flow stress at high strain rates with application to adiabatic shear banding , 1994 .

[4]  Dennis Grady The Statistical Fragmentation Theory of N. F. Mott , 2004 .

[5]  J. M. Wells,et al.  Validating Theories for Brittle Damage , 2007 .

[6]  Marc A. Meyers,et al.  Evolution of microstructure and shear-band formation in α-hcp titanium , 1994 .

[7]  R. Becker Elastische Nachwirkung und Plastizität , 1925 .

[8]  Eric Markiewicz,et al.  Identification technique of constitutive model parameters for crashworthiness modelling , 1999 .

[9]  L. Murr,et al.  Deformation effects in shocked metals and alloys , 2006 .

[10]  L. Murr,et al.  Observations and simulations of the low velocity-to-hypervelocity impact crater transition for a range of penetrator densities into thick aluminum targets , 2004 .

[11]  G. Gray,et al.  Microstructural characteristics of post-shear localization in cold-rolled 316L stainless steel , 2007 .

[12]  Q. Wei Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses , 2007 .

[13]  K. G. Hoge,et al.  The temperature and strain rate dependence of the flow stress of tantalum , 1977 .

[14]  M. Meyers,et al.  Shock Compression of Monocrystalline Copper: Atomistic Simulations , 2007 .

[15]  李幼升,et al.  Ph , 1989 .

[16]  R. Armstrong,et al.  DISLOCATION MECHANICS BASED ANALYSIS OF MATERIAL DYNAMICS BEHAVIOR , 1988 .

[17]  A. Cottrell THEORY OF BRITTLE FRACTURE IN STEEL AND SIMILAR METALS , 1958 .

[18]  M. Meyers,et al.  Spontaneous and forced shear localization in high-strain-rate deformation of tantalum , 1999 .

[19]  Y. Estrin,et al.  Computer simulation of the low temperature instability of plastic flow , 1982 .

[20]  Ch. Frémont,et al.  Les propriétés mécaniques du fer en cristaux isoles , .

[21]  Yi-long Bai,et al.  Adiabatic Shear Localization: Occurrence, Theories and Applications , 1992 .

[22]  John S. Rinehart,et al.  Behavior of Metals Under Impulsive Loads , 1965 .

[23]  J. Klepaczko Thermally activated flow and strain rate history effects for some polycrystalline f.c.c. metals , 1975 .

[24]  J. N. Fritz,et al.  CHAPTER VII – THE EQUATION OF STATE OF SOLIDS FROM SHOCK WAVE STUDIES , 1970 .

[25]  M. Wechsler Radiation embrittlement in the pressure-vessel steels of nuclear power plants , 1989 .

[26]  J. H. Hollomon,et al.  Effect of Strain Rate Upon Plastic Flow of Steel , 1944 .

[27]  T. N. Baker Yield, flow and fracture of polycrystals , 1983 .

[28]  P. Perzyna,et al.  The Physics and Mathematics of Adiabatic Shear Bands , 2002 .

[29]  A. Douglas,et al.  NANODISLOCATION STRUCTURES FOR SHOCK STRENGTHENING , 1992 .

[30]  E. Bringa,et al.  A viscoplastic micromechanical model for the yield strength of nanocrystalline materials , 2006 .

[31]  L. Murr,et al.  Correlations of computed simulations with residual hardness mappings and microstructural observations of high velocity and hypervelocity impact craters in copper , 1998 .

[32]  L. Murr,et al.  Solid-state flow, mechanical alloying, and melt-related phenomena for [001] single-crystal W ballistic rod penetrators interacting with steel targets , 2006 .

[33]  Hussein M. Zbib,et al.  Multiscale dislocation dynamics simulations of shock compression in copper single crystal , 2005 .

[34]  M. Meyers A mechanism for dislocation generation in shock-wave deformation , 1978 .

[35]  J. D. Campbell,et al.  Tensile Testing of Materials at Impact Rates of Strain , 1960 .

[36]  N. Thadhani,et al.  Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states , 2006 .

[37]  R. Armstrong,et al.  Dislocation Mechanics Based analysis of Material Dynamics Behavior : Enhanced Ductility, Deformation Twinning, Shock Deformation, Shear Instability, Dynamic Recovery , 1997 .

[38]  L. Murr,et al.  Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization , 2004 .

[39]  F. Seitz,et al.  The Theory of the Plastic Properties of Solids. IV , 1941 .

[40]  Fernando E. Prieto,et al.  The equation of state of solids , 1975 .

[41]  S. Suresh,et al.  Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins , 2005 .

[42]  R. Armstrong,et al.  Constitutive relations for titanium and Ti-6Al-4V , 2008 .

[43]  R. Reed,et al.  Effect of Neutron Irradiation on the Temperature Dependence of the Flow Stress for Niobium Single Crystals , 1970 .

[44]  S. Timothy,et al.  The structure of adiabatic shear bands in metals: A critical review☆ , 1987 .

[45]  R. Armstrong,et al.  Discontinuous twinning during essentially elastic compression of steel at 4·2°K , 1972 .

[46]  M. Meyers,et al.  Material dynamics under extreme conditions of pressure and strain rate , 2005 .

[47]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[48]  H. Conrad Plastic deformation kinetics in nanocrystalline FCC metals based on the pile-up of dislocations , 2007 .

[49]  F. Zerilli,et al.  Dislocation mechanics-based constitutive equations , 2004 .

[50]  M. Polanyi,et al.  Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte , 1934 .

[51]  R. Armstrong,et al.  Dislocation mechanics aspects of plastic instability and shear banding , 1994 .

[52]  V. Trefilov,et al.  Change of the deformation mechanism (slip ⇄ twinning) in polycrystalline α‐iron , 1966 .

[53]  L. Murr,et al.  Shock-induced deformation twinning in tantalum , 1997 .

[54]  Ronald W. Armstrong,et al.  Reverse‐ballistic impact study of shear plug formation and displacement in Ti6Al4V alloy , 1993 .

[55]  I. Beyerlein,et al.  Dislocation motion in high strain-rate deformation , 2007 .

[56]  R. Armstrong,et al.  Dislocation Mechanics of Shock-Induced Plasticity , 2007 .

[57]  A. S. Argon,et al.  The strongest size , 2006 .

[58]  R. Armstrong,et al.  MODELING SHOCK WAVES WITH DISLOCATION MECHANICS BASED CONSTITUTIVE RELATIONS , 1992 .

[59]  S. Deya,et al.  On the influence of constitutive relation in projectile impact of steel plates , 2006 .

[60]  T. Belytschko,et al.  A simplified mesh‐free method for shear bands with cohesive surfaces , 2007 .

[61]  Stephen M. Walley,et al.  Review of experimental techniques for high rate deformation and shock studies , 2004 .

[62]  Picosecond X‐Ray Diffraction from Laser‐Shocked Copper and Iron , 2006 .

[63]  D. J. Parry,et al.  The Hopkinson Bar , 1999 .

[64]  B. Hopkinson A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets , 1914 .

[65]  Tsai,et al.  Formation of nanodislocation dipoles in shock-compressed crystals. , 1993, Physical Review B (Condensed Matter).

[66]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[67]  J. F. Kalthoff,et al.  On the measurement of dynamic fracture toughnesses — a review of recent work , 1985 .

[68]  Wing Kam Liu,et al.  On criteria for dynamic adiabatic shear band propagation , 2007 .

[69]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[70]  J. W. Swegle,et al.  Shock viscosity and the prediction of shock wave rise times , 1985 .

[71]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[72]  R. Batra Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material , 2001 .

[73]  D. Kalantar,et al.  Shock deformation of face-centred-cubic metals on subnanosecond timescales , 2006, Nature materials.

[74]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  M. Meyers Dynamic Behavior of Materials , 1994 .

[76]  W. L. Elban,et al.  Temperature rise at a dislocation pile-up breakthrough , 1989 .

[77]  W. Trott,et al.  Variability in Dynamic Properties of Tantalum: Spall, Hugoniot Elastic Limit and Attenuation , 2006 .

[78]  M. Edwards Properties of metals at high rates of strain , 2006 .

[79]  M. Considére Mémoire sur l'emploi du fer et de l'acier dans les constructions , 1885 .

[80]  George Z. Voyiadjis,et al.  A coupled temperature and strain rate dependent yield function for dynamic deformations of bcc metals , 2006 .

[81]  T. Germann,et al.  Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results , 2004 .

[82]  Kenneth S. Vecchio,et al.  Dynamic Effects in Hopkinson Bar Four-Point Bend Fracture , 2007 .

[83]  R. Armstrong Theory of the tensile ductile-brittle behavior of poly-crystalline h.c.p. materials, with application to beryllium☆ , 1968 .

[84]  M. Meyers,et al.  High-strain, high-strain-rate behavior of tantalum , 1995 .

[85]  Steven Nicolich,et al.  MITIGATING THE SHAPED CHARGE JET IMPACT THREAT IN MAIN CHARGE FILL AMMUNITION , 2007 .

[86]  E. Lippert Handbuch der Physik ‐ Encyclopedia of Physics, Band XXVI: Licht und Materie. II. Herausgegeben von S. Flügge. Springer‐Verlag, Berlin 1958. VII und 956 Seiten. Preis: DM 168,‐. , 1960 .

[87]  N. J. Petch,et al.  The tensile test , 1990 .

[88]  J. Duffy,et al.  An experimental study of the formation process of adiabatic shear bands in a structural steel , 1988 .

[89]  Pol Duwez,et al.  The Propagation of Plastic Deformation in Solids , 1950 .

[90]  E. Orowan,et al.  Problems of plastic gliding , 1940 .

[91]  B. W. Dunn A photographic impact testing machine for measuring the varying intensity of an impulsive force , 1897 .

[92]  R. Armstrong,et al.  Dislocation-mechanics-based constitutive relations for material dynamics calculations , 1987 .

[93]  Thomas A. Siewert,et al.  Historical background and development of the Charpy test , 2002 .

[94]  S. R. Bodner,et al.  Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials , 1975 .

[95]  R. Armstrong,et al.  Dislocation aspects of shock-wave and high-strain-rate phenomena , 2001 .

[96]  H. Zbib,et al.  Modelling the dynamic deformation and patterning in fcc single crystals at high strain rates: dislocation dynamics plasticity analysis , 2005 .

[97]  W. L. Elban,et al.  Adiabatic heating at a dislocation pile-up avalanche , 1982 .

[98]  R. Armstrong,et al.  Dislocation mechanics based constitutive equation incorporating dynamic recovery and applied to thermomechanical shear instability , 1997 .

[99]  T. Nicholas Tensile testing of materials at high rates of strain , 1981 .

[100]  G I Taylor,et al.  JAMES FORREST LECTURE 1946. THE TESTING OF MATERIALS AT HIGH RATES OF LOADING. , 1946 .

[101]  A. C. Whiffin The use of flat-ended projectiles for determining dynamic yield stress - II. Tests on various metallic materials , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[102]  R. Sandström,et al.  Relationship between Charpy V transition temperature in mild steel and various material parameters , 1984 .

[103]  R. Armstrong,et al.  Work-hardening in cleavage fracture toughness , 1989 .

[104]  J. Weertman,et al.  Dislocation dynamics and plastic shock waves , 1988 .

[105]  L. Murr,et al.  Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti-6Al-4V targets , 2007 .

[106]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .

[107]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[108]  J. Gilman Micromechanics of shear banding , 1994 .

[109]  George Z. Voyiadjis,et al.  A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures , 2005 .

[110]  G. V. Stepanov,et al.  Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel , 1980 .

[111]  N. Petch,et al.  The ductile-brittle transition in the fracture of α-iron: II , 1958 .

[112]  Fracture mechanics and the nuclear industry , 1990 .

[113]  Lawrence E Murr,et al.  Hydrocode and microstructural analysis of explosively formed penetrators , 2000 .

[114]  David L. McDowell,et al.  Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading , 2008 .

[115]  M. Knudson,et al.  Dynamic Compression of Iron Single Crystals , 2005 .

[116]  W. Johnson Henri Tresca as the originator of adiabatic heat lines , 1987 .

[117]  Ronald W. Armstrong,et al.  Description of tantalum deformation behavior by dislocation mechanics based constitutive relations , 1990 .

[118]  Jason R. Foley,et al.  Compressive Properties of Extruded Polytetrafluoroethylene , 2007 .

[119]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[120]  V. Nesterenko,et al.  Dynamics of Heterogeneous Materials , 2001 .

[121]  Richard Alan Lesar,et al.  The importance of cross-slip in high-rate deformation , 2007 .

[122]  N. Thadhani,et al.  Analysis of dynamic mechanical behavior in reverse Taylor anvil-on-rod impact tests , 2007 .

[123]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[124]  L. Magness High strain rate deformation behaviors of kinetic energy penetrator materials during ballistic impact , 1994 .

[125]  George Z. Voyiadjis,et al.  Microstructural based models for bcc and fcc metals with temperature and strain rate dependency , 2005 .

[126]  P. Rodriguez Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system, and rate-controlling dislocation mechanism , 2004 .

[127]  Defect Substructures in Plate Impacted and Laser Shocked Monocrystalline Copper , 2006 .

[128]  K. T. Ramesh,et al.  A rigorous assessment of the benefits of miniaturization in the Kolsky bar system , 2004 .

[129]  Ting Zhu,et al.  Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals , 2007, Proceedings of the National Academy of Sciences.

[130]  Stuart A. Maloy,et al.  Influence of Shock Prestraining and Grain Size on the Dynamic-Tensile-Extrusion Response of Copper: Experiments and Simulation , 2006 .

[131]  On Further Applications of the Flow of Solids , 1878 .

[132]  Joanna L. Casson,et al.  Nanosecond interferometric studies of surface deformation induced by laser irradiation , 2000, Laser Damage.

[133]  W. E. Carrington,et al.  The use of flat-ended projectiles for determining dynamic yield stress III. Changes in microstructure caused by deformation under impact at high-striking velocities , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[134]  Ronald W. Armstrong,et al.  Mechanics and materials : fundamentals and linkages , 1999 .

[135]  Kenneth S. Vecchio,et al.  Improved Pulse Shaping to Achieve Constant Strain Rate and Stress Equilibrium in Split-Hopkinson Pressure Bar Testing , 2007 .

[136]  C. S. Smith,et al.  METALLOGRAPHIC STUDIES OF METALS AFTER EXPLOSIVE SHOCK , 1958 .

[137]  A. N. Stroh Force on a Moving Dislocation , 1962 .

[138]  L. Murr,et al.  Adiabatic shear bands and examples of their role in severe plastic deformation , 2002 .

[139]  B. Hopkinson A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets , 2022 .

[140]  R. Armstrong,et al.  Dislocation Mechanics Under Extreme Pressures , 2007 .

[141]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[142]  C. Siviour,et al.  A Miniaturized Split Hopkinson Pressure Bar for Very High Strain Rate Testing , 2004 .

[143]  L. Murr,et al.  Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets: microstructural analysis and computer simulations , 2002 .

[144]  H. Zbib,et al.  Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations , 2006 .

[145]  L. Meyer,et al.  Metallurgical Effects on Impact Loaded Materials , 1981 .

[146]  J. Hawkyard,et al.  The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the “mushrooming” of flat-ended projectiles , 1968 .

[147]  D. A. Gorham,et al.  An improved method for compressive stress-strain measurements at very high strain rates , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[148]  G. T. Gray,et al.  Influence of grain size on the constitutive response and substructure evolution of MONEL 400 , 1999 .

[149]  Ronald W. Armstrong,et al.  The (cleavage) strength of pre-cracked polycrystals , 1987 .

[150]  G. Gray Deformation twinning in Al-4.8 wt% Mg , 1988 .

[151]  R. Armstrong,et al.  Flow stress/strain rate/grain size coupling for fcc nanopolycrystals , 2006 .

[152]  K. Vecchio,et al.  A microstructural investigation of adiabatic shear bands in an interstitial free steel , 2007 .

[153]  H. Rogers Adiabatic Plastic Deformation , 1979 .

[154]  Peter S. Lomdahl,et al.  Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum , 2004 .

[155]  L. Murr,et al.  Dynamic Recrystallization: The Dynamic Deformation Regime , 2007 .

[156]  G. S. Pisarenko,et al.  The combined micro- and macro-fracture mechanics approach to engineering problems of strength , 1987 .

[157]  R. Armstrong,et al.  The effect of dislocation drag on the stress-strain behavior of F.C.C. metals , 1992 .

[158]  George Z. Voyiadjis,et al.  Transient localizations in metals using microstructure-based yield surfaces , 2006 .

[159]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[160]  Magnus Langseth,et al.  On the influence of constitutive relation in projectile impact of steel plates , 2007 .

[161]  R. Davies A critical study of the Hopkinson pressure bar , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[162]  S. Walley Shear Localization: A Historical Overview , 2007 .

[163]  Lynn Seaman,et al.  Computational models for ductile and brittle fracture , 1976 .