What controls the length of noncoding DNA?

Several recent studies of genome evolution indicate that the rate of DNA loss exceeds that of DNA gain, leading to an underlying mutational pressure towards collapsing the length of noncoding DNA. That such a collapse is not observed suggests opposing mechanisms favoring longer noncoding regions. The presence of transposable elements alone also does not explain observed features of noncoding DNA. At present, a multidisciplinary approach--using population genetics techniques, large-scale genomic analyses, and in silico evolution--is beginning to provide new and valuable insights into the forces that shape the length of noncoding DNA and, ultimately, genome size. Recombination, in a broad sense, might be the missing key parameter for understanding the observed variation in length of noncoding DNA in eukaryotes.

[1]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[2]  A. Mirsky,et al.  THE DESOXYRIBONUCLEIC ACID CONTENT OF ANIMAL CELLS AND ITS EVOLUTIONARY SIGNIFICANCE , 1951, The Journal of general physiology.

[3]  Sheldon Penman,et al.  hnRNA size and processing as related to different DNA content in two dipterans: Drosophila and aedes , 1975, Cell.

[4]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[5]  T. Prolla,et al.  Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair , 1994, Nature.

[6]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[7]  S. Ohno,et al.  So much "junk" DNA in our genome. , 1972, Brookhaven symposia in biology.

[8]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[9]  C. A. Thomas The genetic organization of chromosomes. , 1971, Annual review of genetics.

[10]  R. Wilson,et al.  How the worm was won. The C. elegans genome sequencing project. , 1999, Trends in genetics : TIG.

[11]  B. Charlesworth,et al.  Transposable element distributions in Drosophila. , 1997, Genetics.

[12]  C. Schlötterer,et al.  Drosophila virilis has long and highly polymorphic microsatellites. , 2000, Molecular biology and evolution.

[13]  M. Kreitman,et al.  The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces. , 2000, Genetics.

[14]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[15]  H. Bünemann,et al.  Mega-introns in the dynein gene DhDhc7(Y) on the heterochromatic Y chromosome give rise to the giant threads loops in primary spermatocytes of Drosophila hydei. , 2000, Genetics.

[16]  K. Wetterstrand,et al.  The distribution and frequency of microsatellite loci in Drosophila melanogaster , 1998, Molecular ecology.

[17]  R. Hudson,et al.  On the role of unequal exchange in the containment of transposable element copy number. , 1988, Genetical research.

[18]  C. Schlötterer,et al.  Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. , 2000, Genetics.

[19]  M. G. Kidwell,et al.  Invasion of Drosophila virilis by the Penelope transposable element , 2000, Chromosoma.

[20]  T. Cavalier-smith,et al.  Skeletal DNA and the evolution of genome size. , 1982, Annual review of biophysics and bioengineering.

[21]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[22]  John M. Hancock,et al.  Simple sequences and the expanding genome. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  D. Petrov,et al.  Genome size and intron size in Drosophila. , 1998, Molecular biology and evolution.

[24]  J. Felsenstein The evolutionary advantage of recombination. , 1974, Genetics.

[25]  A. Vinogradov Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. , 1998, Cytometry.

[26]  M. Long,et al.  Intron-exon structures of eukaryotic model organisms. , 1999, Nucleic acids research.

[27]  A. Hughes,et al.  Small genomes for better flyers , 1995, Nature.

[28]  L. Duret,et al.  Why do genes have introns? Recombination might add a new piece to the puzzle. , 2001, Trends in genetics : TIG.

[29]  D Graur,et al.  Patterns and rates of indel evolution in processed pseudogenes from humans and murids. , 1997, Gene.

[30]  D. Petrov,et al.  High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. , 1998, Molecular biology and evolution.

[31]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[32]  A. Clark,et al.  Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Schlötterer,et al.  Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. , 1999, Molecular biology and evolution.

[34]  L. Zhivotovsky,et al.  Distribution and evolution of mobile elements in the virilis species group of Drosophila , 1999, Chromosoma.

[35]  M. V. Katti,et al.  Differential distribution of simple sequence repeats in eukaryotic genome sequences. , 2001, Molecular biology and evolution.

[36]  W. Belknap,et al.  Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Clark,et al.  Genetic recombination: Intron size and natural selection , 1999, Nature.

[38]  N. Barton,et al.  The evolution of recombination: removing the limits to natural selection. , 1997, Genetics.

[39]  R. Durrett,et al.  Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Hey Selfish genes, pleiotropy and the origin of recombination. , 1998, Genetics.

[41]  Adam Eyre-Walker,et al.  Recombination and mammalian genome evolution , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  A. Vinogradov Intron–Genome Size Relationship on a Large Evolutionary Scale , 1999, Journal of Molecular Evolution.

[43]  T. Takano-Shimizu Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. , 2001, Molecular biology and evolution.

[44]  G. McVean,et al.  The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. , 2000, Genetics.

[45]  D. Petrov,et al.  Evidence for DNA loss as a determinant of genome size. , 2000, Science.

[46]  M. Noor,et al.  High frequency of microsatellites in Drosophila pseudoobscura. , 2000, Genes & genetic systems.

[47]  M. Aguadé,et al.  Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. , 1999, Genetics.

[48]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[49]  C. Aquadro,et al.  High density of long dinucleotide microsatellites in Drosophila subobscura. , 2000, Molecular biology and evolution.

[50]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[51]  H. Tachida Molecular Evolution in a Multisite Nearly Neutral Mutation Model , 2000, Journal of Molecular Evolution.

[52]  J. Bennetzen,et al.  Do Plants Have a One-Way Ticket to Genomic Obesity? , 1997, The Plant cell.

[53]  N. Barton Linkage and the limits to natural selection. , 1995, Genetics.

[54]  C. D. Darlington,et al.  Evolution Of Genetic Systems , 1942 .

[55]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[56]  D. Petrov,et al.  Genomic gigantism: DNA loss is slow in mountain grasshoppers. , 2001, Molecular biology and evolution.

[57]  R. Hudson,et al.  Estimating the recombination parameter of a finite population model without selection. , 1987, Genetical research.

[58]  H. Robertson,et al.  The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. , 2000, Genome research.

[59]  A. Ogurtsov,et al.  Selective constraint in intergenic regions of human and mouse genomes. , 2001, Trends in genetics : TIG.

[60]  A. Clark,et al.  Local rates of recombination are positively correlated with GC content in the human genome. , 2001, Molecular biology and evolution.

[61]  L. Duret,et al.  Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. , 2000, Genetics.

[62]  T. Cavalier-smith The Evolution of genome size , 1985 .

[63]  M. Bennett,et al.  The duration of meiosis , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[65]  G Elgar,et al.  Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. , 1999, Genome research.

[66]  A. Nekrutenko,et al.  Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. , 2000, Gene.