Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

[1]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[2]  Colin Rowat,et al.  Proving soundness of combinatorial Vickrey auctions and generating verified executable code , 2013, ArXiv.

[3]  Colin Rowat,et al.  The ForMaRE Project - Formal Mathematical Reasoning in Economics , 2013, MKM/Calculemus/DML.

[4]  Jonathan P. Bowen,et al.  Z and HOL , 1994, Z User Workshop.

[5]  Colin Rowat,et al.  A Qualitative Comparison of the Suitability of Four Theorem Provers for Basic Auction Theory , 2013, MKM/Calculemus/DML.

[6]  Tom Leinster Rethinking Set Theory , 2014, Am. Math. Mon..

[7]  Tobias Nipkow,et al.  Code Generation via Higher-Order Rewrite Systems , 2010, FLOPS.

[8]  Lawrence C. Paulson,et al.  Set theory for verification: I. From foundations to functions , 1993, Journal of Automated Reasoning.

[9]  S. G. Simpson Subsystems of Second Order Arithmetic: INTRODUCTION , 2009 .

[10]  Tobias Nipkow,et al.  Proof Pearl: Defining Functions over Finite Sets , 2005, TPHOLs.

[11]  Lawrence C. Paulson Defining functions on equivalence classes , 2006, TOCL.

[12]  Eric Maskin,et al.  The Unity of Auction Theory: Milgrom's Masterclass , 2004 .

[13]  J. E. Nicholls,et al.  Z User Workshop , 1990, Workshops in Computing.

[14]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[15]  C. Bergman,et al.  Universal Algebra: Fundamentals and Selected Topics , 2011 .

[16]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.