Nurse′s A‐Phase: Synthesis and Characterization in the Binary System Ca2SiO4–Ca3(PO4)2

In the present study, a new single phase Si–Ca–P-based ceramic was obtained by conventional sintering of compacted mixtures of calcium hydrogen phosphate anhydrous, calcium carbonate, and silicon oxide. The synthesis conditions were the followings: heated up to 1550°C for a total period of time of 72 h (3 d), with quenching in liquid nitrogen, milling, pressing, and reheating every 24 h. Second, heating at 1300°C/3 h and subsequent annealed at 1200°C/24 h. Mineralogical and microstructural characterization of the obtained Si–Ca–P-based material was determined by Differential Thermal Analysis, X-ray diffraction, Scanning Electron Microscopy with attached wavelength dispersive spectroscopy, Micro-Raman and Fourier Transform Infrared Spectrometer. The results showed a single Si–Ca–P phase material with a Ca2SiO4/Ca3(PO4)2 molar ratio equal to 2:1. The parameters of the Weibull distribution of strength, determined by diametrical compression of disks, were: modulus, m = 13, and characteristic strength σ0 = 0.60 MPa.

[1]  P. N. Aza,et al.  New evaluation of the in vitro response of silicocarnotite monophasic material , 2015 .

[2]  M. Sainz,et al.  Single-phase silicocarnotite synthesis in the subsystem Ca3(PO4)2–Ca2SiO4 , 2014 .

[3]  C. Baudín,et al.  Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics. , 2014, Journal of the mechanical behavior of biomedical materials.

[4]  J. Calvo-Guirado,et al.  Biodegradation Process of α-Tricalcium Phosphate and α-Tricalcium Phosphate Solid Solution Bioceramics In Vivo: A Comparative Study , 2013, Microscopy and Microanalysis.

[5]  Luis Meseguer-Olmo,et al.  αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies. , 2013, Journal of biomedical materials research. Part A.

[6]  Marcus Abboud,et al.  Physical properties, mechanical behavior, and electron microscopy study of a new α-TCP block graft with silicon in an animal model. , 2012, Journal of biomedical materials research. Part A.

[7]  L. Meseguer-Olmo,et al.  “In vitro” behaviour of adult mesenchymal stem cells of human bone marrow origin seeded on a novel bioactive ceramics in the Ca2SiO4–Ca3(PO4)2 system , 2012, Journal of Materials Science: Materials in Medicine.

[8]  I. M. Martínez,et al.  New block graft of α-TCP with silicon in critical size defects in rabbits: Chemical characterization, histological, histomorphometric and micro-CT study , 2012 .

[9]  Piedad N. De Aza,et al.  The System Ca3(PO4)2–Ca2SiO4: The Sub-System Ca2SiO4–7CaOP2O52SiO2 , 2011 .

[10]  P. Velásquez,et al.  The Sub‐System α‐TCPss‐Silicocarnotite Within the Binary System Ca3(PO4)2–Ca2SiO4 , 2011 .

[11]  L. Meseguer-Olmo,et al.  Production and study of in vitro behaviour of monolithic α-tricalcium phosphate based ceramics in the system Ca3(PO4)2–Ca2SiO4 , 2011 .

[12]  D. Sheptyakov,et al.  Silicon Location in Silicate-Substituted Calcium Phosphate Ceramics Determined by Neutron Diffraction , 2011 .

[13]  R. Carrodeguas,et al.  α-Tricalcium phosphate: synthesis, properties and biomedical applications. , 2010, Acta biomaterialia.

[14]  P. Velásquez,et al.  Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2–Ca2SiO4 , 2010 .

[15]  M. Bohner,et al.  Silicon-substituted calcium phosphates - a critical view. , 2009, Biomaterials.

[16]  M. Lombardi,et al.  Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability , 2009 .

[17]  S. Foucaud,et al.  Synthesis of silicated hydroxyapatite Ca10(PO4)6−x(SiO4)x(OH)2−x , 2008 .

[18]  R. Cuscó,et al.  Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy , 2007 .

[19]  M. Sayer,et al.  Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate , 2006 .

[20]  C. Baudín,et al.  Strength Analysis of Self‐Supported Films Produced by Aqueous Electrophoretic Deposition , 2005 .

[21]  B. Reynard,et al.  Raman Spectroscopic Investigations of Dicalcium Silicate: Polymorphs and High‐Temperature Phase Transformations , 2005 .

[22]  C. Baudín,et al.  Statistical analysis of the fracture behaviour of porous ceramic Raschig rings , 2004 .

[23]  M. Sitarz,et al.  Vibrational spectra of phosphate–silicate biomaterials , 2003 .

[24]  M. Sayer,et al.  Structure and composition of silicon-stabilized tricalcium phosphate. , 2003, Biomaterials.

[25]  W. Bonfield,et al.  Chemical characterization of silicon-substituted hydroxyapatite. , 1999, Journal of biomedical materials research.

[26]  R. A. Condrate,et al.  The Infrared and Raman Spectra of β-and α-Tricalcium Phosphate (Ca3(Po4)2) , 1998 .

[27]  P. N. Aza,et al.  Vibrational Properties of Calcium Phosphate Compounds. 1. Raman Spectrum of β-Tricalcium Phosphate , 1997 .

[28]  R. Cuscó,et al.  Vibrational Properties of Calcium Phosphate Compounds. 2. Comparison between Hydroxyapatite and β-Tricalcium Phosphate , 1997 .

[29]  Czesława Paluszkiewicz,et al.  The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different Ca/P ratios , 1997 .

[30]  F. Puertas,et al.  Examinations by infra-red spectroscopy for the polymorphs of dicalcium silicate , 1985 .

[31]  H. Heymann,et al.  Subsolidus Relations in the System 2CaO·SiO2‐3CaO·P2O5 , 1969 .

[32]  R. Nurse,et al.  220. High-temperature phase equilibria in the system dicalcium silicate–tricalcium phosphate , 1959 .

[33]  G. Trömel,et al.  Untersuchungen im System CaOP2O5SiO2 , 1948 .

[34]  M. Bredig High-temperature Crystal Chemistry of AmBXn Compounds with Particular Reference to Calcium Orthosilicate , 1945 .

[35]  M. Bredig Isomorphism and allotrophy in compounds of the type A2XO4 , 1942 .

[36]  M. Bredig,et al.  Untersuchungen Über Kalk‐Alkali‐Phosphate. II. Über Calcium‐Kalium‐Phosphate , 1938 .

[37]  G. Nagelschmidt 179. A new calcium silicophosphate , 1937 .

[38]  R. Frank,et al.  Untersuchungen über Kalk‐Alkaliphosphate. I. Ein Beitrag zur Kenntnis des Rhenaniaphosphates , 1936 .