Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem

[1]  Martiny,et al.  Global biogeography of microbial nitrogen-cycling traits in soil , 2016 .

[2]  Ye Deng,et al.  Biogeographic patterns of soil diazotrophic communities across six forests in the North America , 2016, Molecular ecology.

[3]  James R. Cole,et al.  Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming , 2016 .

[4]  Kai Xue,et al.  The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem , 2016, Microbial Ecology.

[5]  Jordan A. Fish,et al.  Xander: employing a novel method for efficient gene-targeted metagenomic assembly , 2015, Microbiome.

[6]  Hong Gu,et al.  BioMiCo: a supervised Bayesian model for inference of microbial community structure , 2015, Microbiome.

[7]  S. Tringe,et al.  High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats , 2015, mBio.

[8]  Jizhong Zhou,et al.  Fungal Communities Respond to Long-Term CO2 Elevation by Community Reassembly , 2015, Applied and Environmental Microbiology.

[9]  Jonathan P Zehr,et al.  nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2 -fixing community dynamics. , 2014, Environmental microbiology.

[10]  Hao Yu,et al.  GeoChip 4: a functional gene‐array‐based high‐throughput environmental technology for microbial community analysis , 2014, Molecular ecology resources.

[11]  Jizhong Zhou,et al.  Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments , 2014, The ISME Journal.

[12]  Jizhong Zhou,et al.  Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities , 2013, mBio.

[13]  Jizhong Zhou,et al.  Elevated CO2 influences microbial carbon and nitrogen cycling , 2013, BMC Microbiology.

[14]  Kristin Bergauer,et al.  Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean , 2013, Environmental microbiology.

[15]  P. Reich,et al.  Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long‐term experiment , 2013, Global change biology.

[16]  Myron L Smith,et al.  Trans-species activity of a nonself recognition domain , 2013, BMC Microbiology.

[17]  Amadou Sarr,et al.  Loss in microbial diversity affects nitrogen cycling in soil , 2013, The ISME Journal.

[18]  P. Reich,et al.  Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass , 2013 .

[19]  Shuijin Hu,et al.  Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2 , 2012, Science.

[20]  Jizhong Zhou,et al.  Applications of functional gene microarrays for profiling microbial communities. , 2012, Current opinion in biotechnology.

[21]  Mary Firestone,et al.  Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. , 2012, Environmental microbiology.

[22]  B. Roe,et al.  Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities , 2012, Applied and Environmental Microbiology.

[23]  Ye Deng,et al.  Development of functional gene microarrays for microbial community analysis. , 2012, Current opinion in biotechnology.

[24]  Jizhong Zhou,et al.  Microbial mediation of carbon-cycle feedbacks to climate warming , 2012 .

[25]  Andreas Richter,et al.  amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions , 2012, Environmental microbiology.

[26]  Jizhong Zhou,et al.  The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide , 2011, The ISME Journal.

[27]  Haixu Tang,et al.  FragGeneScan: predicting genes in short and error-prone reads , 2010, Nucleic acids research.

[28]  D. Arrouays,et al.  Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale , 2010, The ISME Journal.

[29]  Jizhong Zhou,et al.  Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. , 2010, Ecology letters.

[30]  Damian Szklarczyk,et al.  eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations , 2009, Nucleic Acids Res..

[31]  R. McMurtrie,et al.  CO2 enhancement of forest productivity constrained by limited nitrogen availability , 2009, Proceedings of the National Academy of Sciences.

[32]  G. Kowalchuk,et al.  Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere , 2008, Biology and Fertility of Soils.

[33]  J. Galloway,et al.  An Earth-system perspective of the global nitrogen cycle , 2008, Nature.

[34]  M. Kuypers,et al.  New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation , 2007, The ISME Journal.

[35]  Bruce A. Hungate,et al.  Altered soil microbial community at elevated CO2 leads to loss of soil carbon , 2007, Proceedings of the National Academy of Sciences.

[36]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[37]  Ilana Berman-Frank,et al.  Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium , 2007 .

[38]  Lars Peter Nielsen,et al.  Evidence for complete denitrification in a benthic foraminifer , 2006, Nature.

[39]  E. Kandeler,et al.  Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland , 2006, Applied and Environmental Microbiology.

[40]  T. Urich,et al.  Archaea predominate among ammonia-oxidizing prokaryotes in soils , 2006, Nature.

[41]  L. Philippot,et al.  Quantitative Detection of the nosZ Gene, Encoding Nitrous Oxide Reductase, and Comparison of the Abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils , 2006, Applied and Environmental Microbiology.

[42]  P. Reich,et al.  Nitrogen limitation constrains sustainability of ecosystem response to CO2 , 2006, Nature.

[43]  R. Ceulemans,et al.  Forest response to elevated CO2 is conserved across a broad range of productivity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[45]  G. Asner,et al.  Nitrogen Cycles: Past, Present, and Future , 2004 .

[46]  W. Parton,et al.  Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide , 2004 .

[47]  Paul Dijkstra,et al.  CO2 Elicits Long-Term Decline in Nitrogen Fixation , 2004, Science.

[48]  R. Norby,et al.  Soil nitrogen cycling under elevated CO2: A synthesis of forest face experiments , 2003 .

[49]  B. Ward,et al.  Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms , 2002, Applied and Environmental Microbiology.

[50]  Hui-Hsien Chou,et al.  DNA sequence quality trimming and vector removal , 2001, Bioinform..

[51]  P. Reich,et al.  correction: Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition , 2001, Nature.

[52]  C. Field,et al.  Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 , 2001, Nature.

[53]  C. Rice,et al.  Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years , 2000, Plant and Soil.

[54]  Jizhong Zhou,et al.  Nitrite Reductase Genes (nirK andnirS) as Functional Markers To Investigate Diversity of Denitrifying Bacteria in Pacific Northwest Marine Sediment Communities , 2000, Applied and Environmental Microbiology.

[55]  C. Moreno-Vivián,et al.  Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases , 1999, Journal of bacteriology.

[56]  B. Hungate,et al.  Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak , 1999 .

[57]  J. G. Kuenen,et al.  Missing lithotroph identified as new planctomycete , 1999, Nature.

[58]  A. Ball Microbial decomposition at elevated CO2 levels: effect of litter quality , 1997 .

[59]  F. Chapin,et al.  Tundra Plant Uptake of Amino Acid and NH4+ Nitrogen in Situ: Plants Complete Well for Amino Acid N , 1996 .

[60]  José Costa,et al.  PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR , 1996, Nucleic Acids Res..

[61]  J. Tiedje,et al.  DNA recovery from soils of diverse composition , 1996, Applied and environmental microbiology.

[62]  J. Soussana,et al.  The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems , 1995, Plant and Soil.

[63]  J. Nagy,et al.  Design and application of a free-air carbon dioxide enrichment facility , 1994 .

[64]  S. R. Sias,et al.  The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes. , 1980, Journal of general microbiology.

[65]  R. Kudela,et al.  Nitrogen cycle of the open ocean: from genes to ecosystems. , 2011, Annual review of marine science.

[66]  L. Condron,et al.  The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter , 2010 .

[67]  Yiqi Luo,et al.  Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. , 2006, Ecology.

[68]  R. B. Jackson,et al.  Does Nitrogen Constrain Carbon Cycling, or Does Carbon Input Stimulate Nitrogen Cycling?1 , 2006 .

[69]  R. B. Jackson,et al.  Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. , 2006, Ecology.

[70]  C. Evans Nitrogen and climate change , 2006 .

[71]  J. Galloway The global nitrogen cycle: changes and consequences , 1998 .

[72]  K. Cameron,et al.  Soil Science: Sustainable Production and Environmental Protection , 1996 .