Fuel-optimal maneuvers of a spacecraft relative to a point in circular orbit

Fuel optimal maneuvers of spacecraft relative to a body in circular orbit are investigated using a point mass model in which the magnitude of the thrust vector is bounded. All nonsingular optimal maneuvers consist of intervals of full thrust and coast and are found to contain at most seven such intervals in one period. Only four boundary conditions where singular solutions occur are possible. Computer simulation of optimal flight path shapes and switching functions are found for various boundary conditions. Emphasis is placed on the problem of soft rendezvous with a body in circular orbit.