On weak tractability of the Clenshaw-Curtis Smolyak algorithm

Abstract We consider the problem of integration of d -variate analytic functions defined on the unit cube with directional derivatives of all orders bounded by 1. We prove that the Clenshaw–Curtis Smolyak algorithm leads to weak tractability of the problem. This seems to be the first positive tractability result for the Smolyak algorithm for a normalized and unweighted problem. The space of integrands is not a tensor product space and therefore we have to develop a different proof technique. We use the polynomial exactness of the algorithm as well as an explicit bound on the operator norm of the algorithm.

[1]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[2]  Henryk Wozniakowski,et al.  The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..

[3]  W. Sickel,et al.  Spline interpolation on sparse grids , 2011 .

[4]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[5]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..

[6]  H. Woxniakowski Information-Based Complexity , 1988 .

[7]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[8]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[9]  Jan Vyb ´ õral Weak and quasi-polynomial tractability of approximation of infinitely differentiable functions , 2013 .

[10]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[11]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[12]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[13]  K. Ritter,et al.  The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .

[14]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[15]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[16]  Henryk Wozniakowski,et al.  Approximation of infinitely differentiable multivariate functions is intractable , 2009, J. Complex..

[17]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[18]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[19]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[20]  W. Sickel,et al.  Smolyak’s Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2006 .

[21]  Henryk Wozniakowski,et al.  Polynomial-Time Algorithms for Multivariate Linear Problems with Finite-Order Weights: Worst Case Setting , 2005, Found. Comput. Math..

[22]  Jan Vybíral,et al.  Weak and quasi-polynomial tractability of approximation of infinitely differentiable functions , 2013, J. Complex..

[23]  F. Pillichshammer,et al.  Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .

[24]  Di RenzoMarco,et al.  Smolyak's algorithm , 2009 .

[25]  T. Müller-Gronbach Hyperbolic cross designs for approximation of random fields , 1998 .

[26]  Pawel Siedlecki,et al.  Uniform weak tractability , 2013, J. Complex..

[27]  Markus Weimar Tractability results for weighted Banach spaces of smooth functions , 2012, J. Complex..

[28]  K. Ritter,et al.  On an interpolatory method for high dimensional integration , 1999 .

[29]  Henryk Wozniakowski,et al.  The curse of dimensionality for numerical integration of smooth functions II , 2012, J. Complex..

[30]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[31]  Shun Zhang,et al.  Approximation of infinitely differentiable multivariate functions is not strongly tractable , 2007, J. Complex..

[32]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[33]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[34]  Philip J. Davis A Construction of Nonnegative Approximate Quadratures , 1967 .

[35]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..