Summation of Rational Series Twisted by Strongly $B$-multiplicative Coefficients

We evaluate in closed form series of the type $\sum u(n) R(n)$, where $(u(n))_n$ is a strongly $B$-multiplicative sequence and $R(n)$ a (well-chosen) rational function. A typical example is: $$ \sum_{n \geq 1} (-1)^{s_2(n)} \frac{4n+1}{2n(2n+1)(2n+2)} = -\frac{1}{4} $$ where $s_2(n)$ is the sum of the binary digits of the integer $n$. Furthermore closed formulas for series involving automatic sequences that are not strongly $B$-multiplicative, such as the regular paperfolding and Golay-Shapiro-Rudin sequences, are obtained; for example, for integer $d \geq 0$: $$ \sum_{n \geq 0} \frac{v(n)}{(n+1)^{2d+1}} = \frac{\pi^{2d+1} |E_{2d}|}{(2^{2d+2}-2)(2d)!} $$ where $(v(n))_n$ is the $\pm 1$ regular paperfolding sequence and $E_{2d}$ is an Euler number.

[1]  Andrew M. Gleason,et al.  The William Lowell Putnam Mathematical Competition , 1980 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Jonathan Sondow,et al.  An Infinite Product Based on a Base: 11222 , 2008, Am. Math. Mon..

[4]  J. Allouche,et al.  Infinite products with strongly $B$-multiplicative exponents , 2007, 0709.4031.

[5]  Jeffrey Shallit,et al.  Sums of digits and the Hurwitz zeta function , 1990 .

[6]  Jeffrey Shallit,et al.  Summation of series defined by counting blocks of digits , 2007 .

[7]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[8]  Khodabakhsh Hessami Pilehrood,et al.  Vacca-type series for values of the generalized-Euler-constant function and its derivative , 2008, 0808.0410.

[9]  Jeffrey Shallit,et al.  Infinite Products Associated with Counting Blocks in Binary Strings , 1989 .

[10]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[11]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[12]  J. Sondow New Vacca-Type Rational Series for Euler's Constant and Its , 2005, math/0508042.

[13]  Jean-Paul Allouche,et al.  De nouveaux curieux produits infinis , 1987 .

[14]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[15]  Jean-Paul Allouche,et al.  On a formula of T. Rivoal , 2013, 1307.3906.