Segmentation of Photovoltaic Module Cells in Electroluminescence Images

High resolution electroluminescence (EL) images captured in the infrared spectrum allow to visually and non-destructively inspect the quality of photovoltaic (PV) modules. Currently, however, such a visual inspection requires trained experts to discern different kinds of defects, which is time-consuming and expensive. Automated segmentation of cells is therefore a key step in automating the visual inspection workflow. In this work, we propose a robust automated segmentation method for extraction of individual solar cells from EL images of PV modules. This enables controlled studies on large amounts of data to understanding the effects of module degradation over time-a process not yet fully understood. The proposed method infers in several steps a high-level solar module representation from low-level edge features. An important step in the algorithm is to formulate the segmentation problem in terms of lens calibration by exploiting the plumbline constraint. We evaluate our method on a dataset of various solar modules types containing a total of 408 solar cells with various defects. Our method robustly solves this task with a median weighted Jaccard index of 94.47% and an $F_1$ score of 97.54%, both indicating a very high similarity between automatically segmented and ground truth solar cell masks.

[1]  N. Flocke,et al.  Algorithm 954 , 2015 .

[2]  Scott Schaefer,et al.  Image deformation using moving least squares , 2006, ACM Trans. Graph..

[3]  D. Tsai,et al.  Defect detection of solar cells in electroluminescence images using Fourier image reconstruction , 2012 .

[4]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[5]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[6]  Andrew W. Fitzgibbon,et al.  A Plumbline Constraint for the Rational Function Lens Distortion Model , 2005, BMVC.

[7]  Andreas Maier,et al.  Enhanced Crack Segmentation (eCS): A Reference Algorithm for Segmenting Cracks in Multicrystalline Silicon Solar Cells , 2019, IEEE Journal of Photovoltaics.

[8]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[9]  Li Wang,et al.  Automatic Detection of Defects in Solar Modules: Image Processing in Detecting , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[10]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[11]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[12]  R. Zemel,et al.  Multiscale conditional random fields for image labeling , 2004, CVPR 2004.

[13]  V. Quaschning,et al.  Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells , 1996 .

[14]  Sergei Vassilvitskii,et al.  Finding the Jaccard median , 2010, SODA '10.

[15]  Yi Li,et al.  Fully Convolutional Instance-Aware Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[17]  Christian Riess,et al.  Automatic Classification of Defective Photovoltaic Module Cells in Electroluminescence Images , 2018, Solar Energy.

[18]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[19]  Yaser Sheikh,et al.  Deltille Grids for Geometric Camera Calibration , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[20]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[21]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Andrew W. Fitzgibbon,et al.  A rational function lens distortion model for general cameras , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[24]  E. Karatepe,et al.  Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells , 2007 .

[25]  G. Medioni,et al.  Tensor Voting : Theory and Applications , 2000 .

[26]  Dezso Sera,et al.  Automatic detection and evaluation of solar cell micro-cracks in electroluminescence images using matched filters , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[27]  Edward Rosten,et al.  Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy , 2008, Machine Vision and Applications.

[28]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[29]  Jack Sklansky,et al.  Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..

[30]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[31]  Bart M. ter Haar Romeny,et al.  Detection of Electrophysiology Catheters in Noisy Fluoroscopy Images , 2006, MICCAI.

[32]  Tony Lindeberg Edge Detection and Ridge Detection with Automatic Scale Selection , 2004, International Journal of Computer Vision.

[33]  Matthew Harker,et al.  Direct type-specific conic fitting and eigenvalue bias correction , 2008, Image Vis. Comput..

[34]  Andrew W. Fitzgibbon,et al.  Simultaneous linear estimation of multiple view geometry and lens distortion , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Christian Riess,et al.  OCPAD — Occluded checkerboard pattern detector , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[36]  Anna Fabijanska,et al.  A survey of subpixel edge detection methods for images of heat-emitting metal specimens , 2012, Int. J. Appl. Math. Comput. Sci..

[37]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[38]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[39]  Mathis Hoffmann,et al.  A Robust Chessboard Detector for Geometric Camera Calibration , 2017, VISIGRAPP.

[40]  Roland Siegwart,et al.  Automatic detection of checkerboards on blurred and distorted images , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Du-Ming Tsai,et al.  Defect Detection in Solar Modules Using ICA Basis Images , 2013, IEEE Transactions on Industrial Informatics.

[42]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[43]  Mohd Abdullah,et al.  Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique , 2014, EURASIP Journal on Image and Video Processing.

[44]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[45]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Ulrich Eitner,et al.  Detection of the voltage distribution in photovoltaic modules by electroluminescence imaging , 2010 .

[48]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[49]  J. Aloimonos Shape from texture , 1988, Biological cybernetics.

[50]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[51]  Shivkumar Kalyanaraman,et al.  DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localization via Fully Convolutional Networks for Solar Panels , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[52]  M. A. Jenkins,et al.  A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration , 1970 .

[53]  Rachid Chenni,et al.  A detailed modeling method for photovoltaic cells , 2007 .

[54]  Khalid Saeed,et al.  K3M: A universal algorithm for image skeletonization and a review of thinning techniques , 2010, Int. J. Appl. Math. Comput. Sci..

[55]  Din-Chang Tseng,et al.  Automatic Finger Interruption Detection in Electroluminescence Images of Multicrystalline Solar Cells , 2015 .

[56]  Christoph J. Brabec,et al.  A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery , 2018 .

[57]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[58]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[59]  Marco Paggi,et al.  A power and energy procedure in operating photovoltaic systems to quantify the losses according to the causes , 2015 .

[60]  Elli Angelopoulou,et al.  ROCHADE: Robust Checkerboard Advanced Detection for Camera Calibration , 2014, ECCV.

[61]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[62]  N. D. Kaushika,et al.  Energy yield simulations of interconnected solar PV arrays , 2002, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[63]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[64]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[65]  Ioannis Pitas,et al.  Digital Image Processing Algorithms , 1993 .

[66]  Luc Florack,et al.  An Efficient Method for Tensor Voting Using Steerable Filters , 2006, ECCV.

[67]  Olivier D. Faugeras,et al.  Automatic calibration and removal of distortion from scenes of structured environments , 1995, Optics & Photonics.

[68]  O. Breitenstein,et al.  Can Luminescence Imaging Replace Lock-in Thermography on Solar Cells? , 2011, IEEE Journal of Photovoltaics.

[69]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[70]  Simon Lucey,et al.  Inverse Compositional Spatial Transformer Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Sergey Ioffe,et al.  Improved Consistent Sampling, Weighted Minhash and L1 Sketching , 2010, 2010 IEEE International Conference on Data Mining.