Estimation of blade structural properties from experimental data

Wind turbine blades often present complex distributions of their stiffness, mass and inertial properties along the span. We propose a method to estimate such physical parameters so as to match given experimental observations. The procedure can be used to understand the nature of possible discrepancies between designed and manufactured blades and to provide updated high fidelity mathematical beam models to be used in aero-elastic simulations. The formulation is based on the constrained optimization of a maximum likelihood cost function and a noisy measurement fusion approach whereby the data of multiple experiments are used simultaneously in a single estimation process. The proposed method is demonstrated first using simulated data and then in the identification of two real small wind turbine blades. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  C. Papadimitriou,et al.  Structural model updating and prediction variability using Pareto optimal models , 2008 .

[2]  P. Mantegazza,et al.  Characteristic behavior of prismatic anisotropic beam via generalized eigenvectors , 2010 .

[3]  J. B. Rosen,et al.  SQP Methods and their Application to Numerical Optimal Control , 1998 .

[4]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[5]  Olivier A. Bauchau,et al.  Robust integration schemes for flexible multibody systems , 2003 .

[6]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[7]  F. M. Jensen,et al.  Structural testing and numerical simulation of a 34 m composite wind turbine blade , 2006 .

[8]  Daniel L. Laird,et al.  Modeling of Blades as Equivalent Beams for Aeroelastic Analysis , 2003 .

[9]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[10]  Daniel L. Laird,et al.  Estimation of uncertain material parameters using modal test data , 1998 .

[11]  Richard B. Nelson,et al.  Simplified calculation of eigenvector derivatives , 1976 .

[12]  T. K. Kundra,et al.  Model updating using constrained optimization , 2000 .

[13]  D. Todd Griffith,et al.  Structural Dynamics Analysis and Model Validation of Wind Turbine Structures , 2009 .

[14]  Paolo Mantegazza,et al.  Linear, straight and untwisted anisotropic beam section properties from solid finite elements , 1994 .

[15]  Costas Papadimitriou,et al.  Multi‐objective framework for structural model identification , 2005 .

[16]  Thomas G. Carne,et al.  Development of Validated Blade Structural Models , 2008 .

[17]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[18]  Jeroen van Dam,et al.  Structural Testing of 9m Carbon Fiber Wind Turbine Research Blades , 2007 .

[19]  Thomas G. Carne,et al.  Experimental Modal Analysis of 9-meter Research-sized Wind Turbine Blades , 2011 .

[20]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .