Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells

A series of nip-type microcrystalline silicon (mc-Si:H) single-junction solar cells has been studied by electrical characterisation, by transmission electron microscopy (TEM) and by Raman spectroscopy using 514 and 633 nm excitation light and both top- and bottomillumination. Thereby, a Raman crystallinity factor indicative of crystalline volume fraction is introduced and applied to the interface regions, i.e. to the mixed amorphous-microcrystalline layers at the top and at the bottomof entire cells. Results are compared with TEM observations for one of the solar cells. Similar Raman and electrical investigations have been conducted also on pin-type mc-Si:H single-junction solar cells. Experimental data show that for all nip and pin mc-Si:H solar cells, the open-circuit voltage linearly decreases as the average of the Raman crystallinity factors for top and bottom interface regions increases.

[1]  Diego Fischer,et al.  Microcrystalline/micromorph silicon thin-film solar cells prepared by VHF-GD technique , 2001 .

[2]  L. Feitknecht,et al.  Influence of Substrate on the Microstructure of Microcrystalline Silicon Layers and Cells , 2002 .

[3]  Arvind Shah,et al.  Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution , 2000 .

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  É. Bustarret,et al.  Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy , 1988 .

[6]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[7]  J. Müller,et al.  Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition , 2002 .

[8]  L. Feitknecht,et al.  Microstructure and open-circuit voltage of n−i−p microcrystalline silicon solar cells , 2003 .

[9]  L. Feitknecht,et al.  Microcrystalline n-i-p solar cells deposited at 10 Å/s by VHF-GD , 2001 .

[10]  Jerome J. Cuomo,et al.  Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering , 1977 .

[11]  F. Finger,et al.  Structure and growth of hydrogenated microcrystalline silicon : investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies , 1997 .

[12]  Raphael Tsu,et al.  Critical volume fraction of crystallinity for conductivity percolation in phosphorus‐doped Si:F:H alloys , 1982 .

[13]  Nicolas Wyrsch,et al.  Microcrystalline silicon and ‘micromorph’ tandem solar cells , 2002 .

[14]  B. Rech,et al.  Thickness dependence of microcrystalline silicon solar cell properties , 2001 .

[15]  J. Meier,et al.  Improved interface between front TCO and microcrystalline silicon p-i-n solar cells. , 2001 .

[16]  Ch. Hof,et al.  Recent Progress in Micromorph Solar Cells , 1998 .

[17]  Fred H. Pollak,et al.  Comprehensive investigation of polish‐induced surface strain in 〈100〉 and 〈111〉 GaAs and InP , 1988 .

[18]  Reinhard Carius,et al.  Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth , 1998 .

[19]  Satyendra Kumar,et al.  Influence of crystallite size distribution on the micro-Raman analysis of porous Si , 2001 .

[20]  A. Poruba,et al.  Enhanced Optical Absorption in Microcrystalline Silicon , 1996 .

[21]  S. A. Solin,et al.  Raman Spectrum of Wurtzite Silicon , 1973 .

[22]  Measurement of stress gradients in hydrogenated microcrystalline silicon thin films using Raman spectroscopy , 2002 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  J. Benedict,et al.  Recent Developments in the use of the Tripod Polisher for TEM Specimen Preparation , 1991 .