Tevelev degrees and Hurwitz moduli spaces

We interpret the degrees which arise in Tevelev’s study of scattering amplitudes in terms of moduli spaces of Hurwitz covers. Via excess intersection theory, the boundary geometry of the Hurwitz moduli space yields a simple recursion for the Tevelev degrees (together with their natural two parameter generalisation). We find exact solutions which specialise to Tevelev’s formula in his cases and connect to the projective geometry of lines and Castelnuovo’s classical count of $g^1_d$ ’s in other cases. For almost all values, the calculation of the two parameter generalisation of the Tevelev degree is new. A related count of refined Dyck paths is solved along the way.

[1]  A. Okounkov,et al.  Gromov-Witten theory, Hurwitz theory, and completed cycles , 2002, math/0204305.

[2]  R. Pandharipande,et al.  A descendent relation in genus 2 , 1998, math/9803072.

[3]  Robbert Dijkgraaf,et al.  Mirror Symmetry and Elliptic Curves , 1995 .

[4]  V. Bouchard,et al.  Hurwitz numbers, matrix models and enumerative geometry , 2007, 0709.1458.

[5]  A. Vainshtein,et al.  Hurwitz numbers and intersections on moduli spaces of curves , 2000, math/0004096.

[6]  R. Pandharipande,et al.  Double ramification cycles on the moduli spaces of curves , 2016, 1602.04705.

[7]  J. V. Zelm Nontautological Bielliptic Cycles , 2016, 1612.01206.

[8]  R. Pandharipande,et al.  HIGHER GENUS GROMOV–WITTEN THEORY OF $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ AND $\mathsf{CohFTs}$ ASSOCIATED TO LOCAL CURVES , 2019, Forum of Mathematics, Pi.

[9]  Emeric Deutsch Dyck path enumeration , 1999, Discret. Math..

[10]  D. Mumford,et al.  On the Kodaira dimension of the moduli space of curves , 1982 .

[11]  Carl Lian,et al.  The $${\mathcal {H}}$$-tautological ring , 2021, Selecta Mathematica.

[12]  R. Pandharipande,et al.  HIGHER GENUS GROMOV–WITTEN THEORY OF Hilb(C2) AND CohFTs ASSOCIATED TO LOCAL CURVES , 2018 .

[13]  R. Pandharipande A geometric construction of Getzler's elliptic relation , 1999 .

[14]  Johannes Schmitt,et al.  Intersections of loci of admissible covers with tautological classes , 2018, Selecta Mathematica.

[15]  R. Dijkgraaf,et al.  The moduli space of curves , 1995 .

[16]  A. Hurwitz Ueber die Anzahl der Riemann'schen Flächen mit gegebenen Verzweigungspunkten , 1901 .

[17]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.