Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells

[1]  Howard Y. Chang,et al.  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis , 2021, Nature Genetics.

[2]  Bertrand Z. Yeung,et al.  Simultaneous single cell measurements of intranuclear proteins and gene expression , 2021, bioRxiv.

[3]  Avi Srivastava,et al.  Multimodal single-cell chromatin analysis with Signac , 2020, bioRxiv.

[4]  Sarah E. Pierce,et al.  High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer , 2020, Nature Communications.

[5]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[6]  Lucas T. Graybuck,et al.  TEA-seq: a trimodal assay for integrated single cell measurement of transcription, epitopes, and chromatin accessibility , 2020, bioRxiv.

[7]  Lucas T. Graybuck,et al.  TEA-seq: a trimodal assay for integrated single cell measurement of transcription, epitopes, and chromatin accessibility , 2020, bioRxiv.

[8]  Hatice S. Kaya-Okur,et al.  Single-cell analysis of chromatin silencing programs in developmental and tumor progression , 2020, bioRxiv.

[9]  G. Castelo-Branco,et al.  Single-cell profiling of histone modifications in the mouse brain , 2020 .

[10]  D. Landau,et al.  Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics , 2020, Nature Reviews Genetics.

[11]  A. Regev,et al.  Purifying Selection against Pathogenic Mitochondrial DNA in Human T Cells. , 2020, The New England journal of medicine.

[12]  M. Peakman,et al.  Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes , 2020, Nature Immunology.

[13]  I. Amit,et al.  Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer , 2020, Cell.

[14]  Mark S. Anderson,et al.  T cell subset-selective IL2RA enhancers shape autoimmune diabetes risk , 2020, bioRxiv.

[15]  Martin J. Aryee,et al.  Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling , 2020, Nature Biotechnology.

[16]  Aviv Regev,et al.  Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin , 2020, Cell.

[17]  A. Trumpp,et al.  Quantitative proteomics reveals specific metabolic features of Acute Myeloid Leukemia stem cells. , 2020, Blood.

[18]  Howard Y. Chang,et al.  ArchR: An integrative and scalable software package for single-cell chromatin accessibility analysis , 2020, bioRxiv.

[19]  Thomas M. Norman,et al.  Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing , 2020, Nature Biotechnology.

[20]  M. Akkoyunlu,et al.  Disease Stage-Specific Pathogenicity of CD138 (Syndecan 1)-Expressing T Cells in Systemic Lupus Erythematosus , 2020, bioRxiv.

[21]  J. Tsang,et al.  Normalizing and denoising protein expression data from droplet-based single cell profiling , 2020, Nature Communications.

[22]  A. Schier Single-cell biology: beyond the sum of its parts , 2020, Nature Methods.

[23]  S. Preissl,et al.  Single-cell multimodal omics: the power of many , 2020, Nature Methods.

[24]  Sean C. Bendall,et al.  Immune monitoring using mass cytometry and related high-dimensional imaging approaches , 2019, Nature Reviews Rheumatology.

[25]  Lior Pachter,et al.  Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins , 2019, Nature Biotechnology.

[26]  C. Lareau,et al.  Longitudinal assessment of clonal mosaicism in humanhematopoiesis via mitochondrial mutation tracking. , 2019, Blood advances.

[27]  Jonathan S. Packer,et al.  Massively multiplex chemical transcriptomics at single-cell resolution , 2019, Science.

[28]  Howard Y. Chang,et al.  Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia , 2019, Nature Biotechnology.

[29]  Jean Yee Hwa Yang,et al.  CiteFuse enables multi-modal analysis of CITE-seq data , 2019, bioRxiv.

[30]  B. Ren,et al.  An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome , 2019, Nature Structural & Molecular Biology.

[31]  Jason D. Buenrostro,et al.  Inference and effects of barcode multiplets in droplet-based single-cell assays , 2019, Nature Communications.

[32]  Kun Zhang,et al.  High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.

[33]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[34]  Jason D. Buenrostro,et al.  Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.

[35]  Jennifer L Hu,et al.  MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices , 2019, Nature Methods.

[36]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[37]  Duhee Bang,et al.  Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations , 2019, Science Advances.

[38]  Neville E. Sanjana,et al.  Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells , 2019, Nature Methods.

[39]  Howard Y. Chang,et al.  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion , 2019, Nature Biotechnology.

[40]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[41]  Hatice S. Kaya-Okur,et al.  CUT&Tag for efficient epigenomic profiling of small samples and single cells , 2019, Nature Communications.

[42]  Martin J. Aryee,et al.  Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics , 2019, Cell.

[43]  Cole Trapnell,et al.  A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens , 2019, Cell.

[44]  Matthew C. Canver,et al.  CRISPResso2 provides accurate and rapid genome editing sequence analysis , 2019, Nature Biotechnology.

[45]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[46]  Jacob M. Schreiber,et al.  A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens , 2019, Cell.

[47]  Bertrand Z. Yeung,et al.  Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics , 2018, Genome Biology.

[48]  Bo Li,et al.  Nuclei multiplexing with barcoded antibodies for single-nucleus genomics , 2018, Nature Communications.

[49]  Lior Pachter,et al.  The Barcode, UMI, Set format and BUStools , 2018, bioRxiv.

[50]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[51]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[52]  Eun Sug Park,et al.  Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens , 2018, Cell.

[53]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[54]  Ansuman T. Satpathy,et al.  Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks , 2018, Cell.

[55]  David A. Knowles,et al.  Landscape of stimulation-responsive chromatin across diverse human immune cells , 2018, Nature Genetics.

[56]  Jonathan S. Weissman,et al.  MULTI-seq: Scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices , 2018, bioRxiv.

[57]  Samuel L. Wolock,et al.  Scrublet: computational identification of cell doublets in single-cell transcriptomic data , 2018, bioRxiv.

[58]  Mauro J. Muraro,et al.  Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells , 2018, bioRxiv.

[59]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[60]  Howard Y. Chang,et al.  Genetic determinants of co-accessible chromatin regions in activated T cells across humans , 2018, Nature Genetics.

[61]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[62]  Akiko Seki,et al.  Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells , 2018, The Journal of experimental medicine.

[63]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[64]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[65]  Vanessa M. Peterson,et al.  Multiplexed quantification of proteins and transcripts in single cells , 2017, Nature Biotechnology.

[66]  Howard Y. Chang,et al.  Discovery of stimulation-responsive immune enhancers with CRISPR activation , 2017, Nature.

[67]  Nicholas A. Sinnott-Armstrong,et al.  An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues , 2017, Nature Methods.

[68]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[69]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[70]  M. Hurles,et al.  Somatic mutations reveal asymmetric cellular dynamics in the early human embryo , 2017, Nature.

[71]  Haiyan Tan,et al.  Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation , 2017, Immunity.

[72]  L. Steinmetz,et al.  Human haematopoietic stem cell lineage commitment is a continuous process , 2017, Nature Cell Biology.

[73]  I. Amit,et al.  Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq , 2016, Cell.

[74]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[75]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[76]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[77]  Neville E Sanjana,et al.  Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening , 2016, Nature Protocols.

[78]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[79]  R. Elkon,et al.  Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 , 2016, Nature Biotechnology.

[80]  Jennifer A. Doudna,et al.  Generation of knock-in primary human T cells using Cas9 ribonucleoproteins , 2015, Proceedings of the National Academy of Sciences.

[81]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[82]  G. Kaplan,et al.  Longitudinal changes in CD4(+) T-cell memory responses induced by BCG vaccination of newborns. , 2013, The Journal of infectious diseases.

[83]  M. Hatano,et al.  CXCR4 Expression on Activated B Cells Is Downregulated by CD63 and IL-21 , 2011, The Journal of Immunology.

[84]  S. Green,et al.  The known and the unknown , 2010, Journal of stem cells & regenerative medicine.

[85]  Helen Bevan,et al.  The power of many , 2010, Optician.

[86]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[87]  H. Schneider,et al.  CTLA-4 trafficking and surface expression. , 2008, Trends in immunology.

[88]  Alexander Hoffmann,et al.  Generation and Activation of Multiple Dimeric Transcription Factors within the NF-κB Signaling System , 2008, Molecular and Cellular Biology.

[89]  M. Bokarewa,et al.  Phenotypic and functional characterization of human CD25+ B cells , 2006, Immunology.

[90]  F. Macian,et al.  NFAT proteins: key regulators of T-cell development and function , 2005, Nature Reviews Immunology.

[91]  F. Sánchez‐Madrid,et al.  CD69 is an immunoregulatory molecule induced following activation. , 2005, Trends in immunology.

[92]  Dan R. Littman,et al.  The Role of CXCR4 in Maintaining Peripheral B Cell Compartments and Humoral Immunity , 2004, The Journal of experimental medicine.

[93]  E. Wherry,et al.  Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells , 2003, Nature Immunology.

[94]  Lin Chen,et al.  Transcriptional regulation by calcium, calcineurin, and NFAT. , 2003, Genes & development.

[95]  J. Allison,et al.  ICOS co-stimulatory receptor is essential for T-cell activation and function , 2001, Nature.

[96]  G. Freeman,et al.  Mouse Inducible Costimulatory Molecule (ICOS) Expression Is Enhanced by CD28 Costimulation and Regulates Differentiation of CD4+ T Cells1 , 2000, The Journal of Immunology.

[97]  Johannes Gerdes,et al.  The Ki‐67 protein: From the known and the unknown , 2000, Journal of cellular physiology.

[98]  B. Alarcón,et al.  Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. , 2000, Immunity.

[99]  G. Schuler,et al.  Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. , 1999, Journal of immunological methods.

[100]  J. Bluestone,et al.  Regulation of CTLA-4 expression during T cell activation. , 1996, Journal of immunology.

[101]  S. Tonegawa,et al.  Surface expression of alternative forms of the TCR/CD3 complex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[102]  E. Lander,et al.  Genomic mapping by fingerprinting random clones: a mathematical analysis. , 1988, Genomics.

[103]  F. Harrisson Beyond the sum of its parts: practice, education and community , 2008 .

[104]  A. Balsari,et al.  Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. , 1997, Cytometry.

[105]  H. Piaggio Mathematical Analysis , 1955, Nature.