A closed‐form expression for computing the sensitivity in second‐order bilinear calibration

A general expression is derived for estimating the sensitivity of second‐order bilinear calibration models, particularly parallel factor analysis (PARAFAC) and bilinear least‐squares (BLLS), whether the second‐order advantage is required or not. In the latter case, the sensitivity is correctly estimated either if the advantage is achieved by processing the unknown sample together with the calibration set (PARAFAC), or by post‐calibration residual bilinearization (BLLS). The expression includes, as special cases, the sensitivity expressions already discussed by Messick, Kalivas and Lang (MKL) and by Ho, Christian and Davidson (HCD). The former one is the maximum achievable sensitivity in a given calibration situation, where all components are present in the calibration set of samples. The latter approach gives the lowest possible sensitivity, corresponding to only calibrating the analyte of interest, leaving the remaining components as uncalibrated constituents of the unknown sample. In intermediate situations, that is more than one calibrated analyte and presence of unexpected components in the unknown sample, only the present approach is able to provide a satisfactory sensitivity parameter, in close agreement with previously described Monte Carlo numerical simulations. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Knut Baumann,et al.  Validation tools for variable subset regression , 2004, J. Comput. Aided Mol. Des..

[2]  F. Xavier Rius,et al.  Limit of detection estimator for second-order bilinear calibration , 2002 .

[3]  Alejandro C Olivieri,et al.  Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. , 2005, Analytical chemistry.

[4]  J. Kalivas,et al.  Selectivity and Related Measures for nth-Order Data. , 1996, Analytical chemistry.

[5]  N. M. Faber,et al.  Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report) , 2006 .

[6]  S. Wold,et al.  Residual bilinearization. Part 1: Theory and algorithms , 1990 .

[7]  R. Tauler,et al.  Estimation of figures of merit using univariate statistics for quantitative second-order multivariate curve resolution , 2001 .

[8]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[9]  Rasmus Bro,et al.  Theory of net analyte signal vectors in inverse regression , 2003 .

[10]  Rolf Sundberg,et al.  Precision of prediction in second‐order calibration, with focus on bilinear regression methods , 2002 .

[11]  Gary D. Christian,et al.  Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons , 1980 .

[12]  A. Olivieri Sample‐specific standard prediction errors in three‐way parallel factor analysis (PARAFAC) exploiting the second‐order advantage , 2004 .

[13]  John H. Kalivas,et al.  Cyclic Subspace Regression , 1998 .

[14]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[15]  N. M. Faber,et al.  Second-order bilinear calibration : the effects of vectorising the data matrices of the calibration set , 2002 .

[16]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[17]  Yoshio Takane,et al.  Matrices with special reference to applications in psychometrics , 2004 .

[18]  van der Linden,et al.  Definition and classification of interferences in analytical procedures , 1989 .

[19]  Alejandro C. Olivieri,et al.  A simple approach to uncertainty propagation in preprocessed multivariate calibration , 2002 .

[20]  Nicolaas M. Faber,et al.  Net analyte signal calculation for multivariate calibration , 2003 .

[21]  Pierre Moulin,et al.  Asymptotic global confidence regions in parametric shape estimation problems , 2000, IEEE Trans. Inf. Theory.

[22]  R. Bro Multiway calibration. Multilinear PLS , 1996 .

[23]  Miguel Valcárcel,et al.  Selectivity in analytical chemistry revisited , 2001 .

[24]  Gerrit Kateman,et al.  Generalized rank annihilation method. I: Derivation of eigenvalue problems , 1994 .

[25]  A. Olivieri On a versatile second‐order multivariate calibration method based on partial least‐squares and residual bilinearization: Second‐order advantage and precision properties , 2005 .

[26]  Anders Björkström,et al.  A Generalized View on Continuum Regression , 1999 .

[27]  Avraham Lorber,et al.  Analytical figures of merit for tensorial calibration , 1997 .

[28]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[29]  Rasmus Bro,et al.  Standard error of prediction for multiway PLS 1 : background and a simulation study , 2002 .

[30]  B. Kowalski,et al.  Theory of analytical chemistry , 1994 .

[31]  Bruce R. Kowalski,et al.  Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares , 1997 .

[32]  Linda B. McGown,et al.  Resolution of multicomponent fluorescent mixtures by analysis of the excitation–emission–frequency array , 1990 .

[33]  Bruce R. Kowalski,et al.  Extension of Trilinear Decomposition Method with an Application to the Flow Probe Sensor , 1994 .

[34]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[35]  Ernest R. Davidson,et al.  Three-dimensional rank annihilation for multi-component determinations , 1983 .

[36]  Rolf Sundberg,et al.  Second-order calibration: bilinear least squares regression and a simple alternative , 1998 .

[37]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[38]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[39]  N. Faber Towards a rehabilitation of the generalized rank annihilation method (GRAM) , 2002, Analytical and bioanalytical chemistry.

[40]  Julian Morris,et al.  Prediction intervals for non-linear projection to latent structures regression models , 2002 .

[41]  R. Boqué,et al.  Iteratively reweighted generalized rank annihilation method 2. Least squares property and variance expressions , 2001 .

[42]  Graciela M. Escandar,et al.  Spectroscopic bilinear least-squares methods exploiting the second-order advantage. Theoretical and experimental study concerning accuracy, sensitivity and prediction error , 2006 .

[43]  Nicolaas M. Faber,et al.  Iteratively reweighted generalized rank annihilation method: 1. Improved handling of prediction bias , 2001 .

[44]  Alejandro C Olivieri,et al.  New Robust Bilinear Least Squares Method for the Analysis of Spectral-pH Matrix Data , 2005, Applied spectroscopy.

[45]  Alejandro C. Olivieri,et al.  Standard error of prediction in parallel factor analysis of three-way data , 2004 .

[46]  B. Kowalski,et al.  Tensorial resolution: A direct trilinear decomposition , 1990 .

[47]  B. Kowalski,et al.  Advances in second‐order calibration , 1993 .

[48]  Rasmus Bro,et al.  Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models , 2003 .

[49]  Yang Li,et al.  A novel trilinear decomposition algorithm for second-order linear calibration , 2000 .

[50]  N. M. Faber,et al.  The price paid for the second‐order advantage when using the generalized rank annihilation method (GRAM) , 2001 .

[51]  A. Lorber Error propagation and figures of merit for quantification by solving matrix equations , 1986 .