Hydro-without-hydro framework for simulations of black hole–neutron star binaries

We introduce a computational framework which avoids solving explicitly hydrodynamic equations and is suitable for studying the pre-merger evolution of black hole–neutron star binary systems. The essence of the method consists of constructing a neutron star model with a black hole companion and freezing the internal degrees of freedom of the neutron star during the course of the evolution of the spacetime geometry. We present the main ingredients of the framework, from the formulation of the problem to the appropriate computational techniques to study these binary systems. In addition, we present numerical results of the construction of initial data sets and evolutions that demonstrate the feasibility of this approach.

[1]  S. Shapiro,et al.  Dynamical evolution of black hole-neutron star binaries in general relativity: Simulations of tidal disruption , 2005, astro-ph/0511366.

[2]  P. Giommi,et al.  An origin for short γ-ray bursts unassociated with current star formation , 2005, Nature.

[3]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[4]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[5]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[6]  A. Levan,et al.  An origin in the local Universe for some short γ-ray bursts , 2005, Nature.

[7]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[8]  E. Schnetter,et al.  Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision , 2005 .

[9]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[10]  S. Shapiro,et al.  Black hole-neutron star binaries in general relativity: Effects of neutron star spin , 2005, astro-ph/0505450.

[11]  B. Kelly The next generation of binary black hole head-on collisions, and their aftermath , 2004 .

[12]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[13]  D. Shoemaker,et al.  Impact of densitized lapse slicings on evolutions of a wobbling black hole , 2003, gr-qc/0307015.

[14]  R. Matzner,et al.  Physics and Initial Data for Multiple Black Hole Spacetimes , 2003, gr-qc/0305071.

[15]  Moving black holes via singularity excision , 2003, gr-qc/0301111.

[16]  S. Husa,et al.  A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.

[17]  S. Shapiro,et al.  Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.

[18]  G. B. Cook Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[19]  P. University,et al.  Approximate analytical solutions to the initial data problem of black hole binary systems , 2000, gr-qc/0001077.

[20]  D. Lai,et al.  Tidal Interaction between a Fluid Star and a Kerr Black Hole in Circular Orbit , 1999, astro-ph/9907365.

[21]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[22]  D. Shoemaker,et al.  Initial data and coordinates for multiple black hole systems , 1998, gr-qc/9805023.

[23]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[24]  P. Diener,et al.  Non-linear effects at tidal capture of stars by a massive black hole – II. Compressible affine models and tidal interaction after capture , 1995 .

[25]  S. Shapiro,et al.  Hydrodynamics of Coalescing Binary Neutron Stars: Ellipsoidal Treatment , 1994, astro-ph/9408054.

[26]  S. Shapiro,et al.  Hydrodynamics of rotating stars and close binary interactions: Compressible ellipsoid models , 1994, astro-ph/9404031.

[27]  S. Shapiro,et al.  Ellipsoidal figures of equilibrium: Compressible models , 1993 .

[28]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[29]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[30]  J. Luminet,et al.  Tidal squeezing of stars by Schwarzschild black holes , 1985 .

[31]  B. Carter,et al.  Mechanics of the affine star model , 1985 .

[32]  J. Luminet,et al.  Tidal compression of a star by a large black hole. I Mechanical evolution and nuclear energy release by proton capture , 1983 .

[33]  W. G. Dixon Multipole structure of static continuous matter distributions in general relativity , 1977 .

[34]  J. Lattimer,et al.  The tidal disruption of neutron stars by black holes in close binaries. , 1976 .

[35]  B. Mashhoon On tidal phenomena in a strong gravitational field , 1975 .

[36]  W. G. Dixon Dynamics of extended bodies in general relativity III. Equations of motion , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[37]  J. York Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial‐value problem of general relativity , 1973 .

[38]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .

[39]  J. York Gravitational degrees of freedom and the initial-value problem , 1971 .

[40]  W. G. Dixon Dynamics of extended bodies in general relativity - II. Moments of the charge-current vector , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  W. G. Dixon Dynamics of extended bodies in general relativity. I. Momentum and angular momentum , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  In Gravitation: an introduction to current research , 1962 .

[43]  G. Darmois,et al.  Théories relativistes de la gravitation et de l'électromagnétisme : relativisté générale et théories unitaires , 1955 .

[44]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[45]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .