Numerical analysis of some dual-phase-lag models
暂无分享,去创建一个
M. I. M. Copetti | Ramón Quintanilla | José R. Fernández | N. Bazarra | R. Quintanilla | José R. Fernández | M. Copetti | N. Bazarra
[1] Wen-qiang Lu,et al. A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium , 2002 .
[2] Jafar Ghazanfarian,et al. A novel SPH method for the solution of Dual-Phase-Lag model with temperature-jump boundary condition in nanoscale , 2015 .
[4] Mingtian Xu,et al. Well-posedness and solution structure of dual-phase-lagging heat conduction , 2001 .
[5] R. Quintanilla,et al. A note on the two temperature theory with dual-phase-lag delay: some exact solutions , 2009 .
[6] Ramón Quintanilla,et al. Ill-posed problems in thermomechanics , 2009, Appl. Math. Lett..
[7] R. Quintanilla. A CONDITION ON THE DELAY PARAMETERS IN THE ONE-DIMENSIONAL DUAL-PHASE-LAG THERMOELASTIC THEORY , 2003 .
[8] G. Mey,et al. Non-Fourier thermal conduction in nano-scaled electronic structures , 2008 .
[9] Francisco Rodríguez-Mateos,et al. A compact difference scheme for numerical solutions of second order dual-phase-lagging models of microscale heat transfer , 2016, J. Comput. Appl. Math..
[10] J. Cabrera,et al. Difference schemes for numerical solutions of lagging models of heat conduction , 2013, Math. Comput. Model..
[11] M. Fabrizio,et al. Delayed Thermal Models: Stability and Thermodynamics , 2014 .
[12] Da Yu Tzou,et al. Temperature-dependent thermal lagging in ultrafast laser heating , 2001 .
[13] P. M. Naghdi,et al. Thermoelasticity without energy dissipation , 1993 .
[14] D. Tzou. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .
[15] Alireza Bahadori,et al. Predictive tool for estimation of convection heat transfer coefficients and efficiencies for finned tubular sections , 2010 .
[16] Da Yu Tzou,et al. The generalized lagging response in small-scale and high-rate heating , 1995 .
[17] V. Zampoli. Uniqueness theorems about high-order time differential thermoelastic models , 2018 .
[18] R. Quintanilla. Exponential Stability in the Dual-Phase-Lag Heat Conduction Theory , 2002 .
[19] R. Quintanilla,et al. Phase-lag heat conduction: decay rates for limit problems and well-posedness , 2014 .
[20] S. Chiriţă. On the time differential dual-phase-lag thermoelastic model , 2017 .
[21] Da Yu Tzou,et al. Macro- to Microscale Heat Transfer: The Lagging Behavior , 2014 .
[22] Kuo-Chi Liu,et al. Analysis of dual-phase-lag heat conduction in cylindrical system with a hybrid method , 2007 .
[23] A second‐order finite difference scheme for solving the dual‐phase‐lagging equation in a double‐layered nanoscale thin film , 2017 .
[24] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[25] Numerical analysis and simulations of a dynamic frictionless contact problem with damage , 2006 .
[26] Ramón Quintanilla,et al. Qualitative Aspects in Dual-Phase-Lag Thermoelasticity , 2006, SIAM J. Appl. Math..
[27] Mingtian Xu,et al. Thermal oscillation and resonance in dual-phase-lagging heat conduction , 2002 .
[28] M. Fabrizio,et al. Stability and Second Law of Thermodynamics in dual-phase-lag heat conduction , 2014 .
[29] J. K. Chen,et al. An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues , 2009 .
[30] Ramón Quintanilla,et al. Spatial behaviour of solutions of the dual‐phase‐lag heat equation , 2005 .
[31] R. Quintanilla,et al. Qualitative aspects in dual-phase-lag heat conduction , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[32] Vincenzo Tibullo,et al. On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction , 2017, 2103.10068.
[33] R. Quintanilla,et al. A note on stability in dual-phase-lag heat conduction , 2006 .
[34] P. M. Naghdi,et al. ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID , 1992 .