Adaptive Feedback Linearization Using Efficient Neural Networks

For a class of single-input, single-output, continuous-time nonlinear systems, a feedback linearizing neural network (NN) controller is presented. Control action is used to achieve tracking performance. The controller is composed of a robustifying term and two neural networks adapted on-line to linearize the system by approximating two nonlinear functions. A stability proof is given in the sense of Lyapunov. No off-line weight learning phase is needed and initialization of the network weights is straightforward. The NN controller is tested on a standard benchmark problem.

[1]  K. Nam,et al.  A model reference adaptive control scheme for pure-feedback nonlinear systems , 1988 .

[2]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[3]  G. Campion,et al.  Indirect adaptive state feedback control of linearly parametrized nonlinear systems , 1990 .

[4]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[5]  K. Narendra,et al.  A new adaptive law for robust adaptation without persistent excitation , 1987 .

[6]  Hassan K. Khalil,et al.  Adaptive control of a class of nonlinear discrete-time systems using neural networks , 1995, IEEE Trans. Autom. Control..

[7]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[8]  Petros A. Ioannou,et al.  Adaptive Systems with Reduced Models , 1983 .

[9]  J. Farrell,et al.  Nonlinear adaptive control using networks of piecewise linear approximators , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[10]  Jay A. Farrell,et al.  Nonlinear adaptive control using networks of piecewise linear approximators , 2000, IEEE Trans. Neural Networks Learn. Syst..

[11]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[12]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[13]  S. Sastry,et al.  Indirect Techniques for Adaptive Input Output Linearization of Nonlinear Systems , 1990, 1990 American Control Conference.

[14]  Frank L. Lewis,et al.  Neural net robot controller with guaranteed tracking performance , 1995, IEEE Trans. Neural Networks.

[15]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[16]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[17]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[18]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[19]  Michael Athans,et al.  Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics , 1985 .

[20]  Frank L. Lewis,et al.  Robust control of a continuous stirred-tank reactor , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[21]  Richard S. Sutton,et al.  A Bioreactor Benchmark for Adaptive Network-based Process Control , 1995 .

[22]  Jay A. Farrell On performance evaluation in online approximation for control , 1998, IEEE Trans. Neural Networks.

[23]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[24]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[25]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[26]  A. Isidori Nonlinear Control Systems , 1985 .

[27]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[28]  K. Narendra,et al.  Bounded error adaptive control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[29]  Héctor J. Sussmann,et al.  Uniqueness of the weights for minimal feedforward nets with a given input-output map , 1992, Neural Networks.

[30]  David G. Taylor,et al.  Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics , 1988, 1988 American Control Conference.

[31]  Eduardo Sontag,et al.  For neural networks, function determines form , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[32]  Chen-Chung Liu,et al.  Adaptively Controlling Nonlinear Continuous-Time Systems Using Neural Networks , 1992, 1992 American Control Conference.

[33]  H. White,et al.  Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions , 1989, International 1989 Joint Conference on Neural Networks.

[34]  Jean-Jacques E. Slotine,et al.  Stable adaptive control and recursive identification using radial Gaussian networks , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[35]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.