A convolution back projection algorithm for local tomography

Abstract The present work deals with the problem of recovering a local image from localised projections using the concept of approximation identity. It is based on the observation that the Hilbert transform of an approximation identity taken from a certain class of compactly supported functions with sufficiently many zero moments has no significant spread of support. The associated algorithm uses data pertaining to the local region along with a small amount of data from its vicinity. The main features of the algorithm are simplicity and similarity with standard filtered back projection (FBP) along with the economic use of data.

[1]  Tim Olson,et al.  Wavelet localization of the Radon transform , 1994, IEEE Trans. Signal Process..

[2]  Berkman Sahiner,et al.  Region-of-interest tomography using exponential radial sampling , 1995, IEEE Trans. Image Process..

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  K. J. Ray Liu,et al.  Wavelet-based multiresolution local tomography , 1997, IEEE Trans. Image Process..

[5]  Alfred K. Louis,et al.  Approximate inverse for linear and some nonlinear problems , 1995 .

[6]  Achi Brandt,et al.  A Fast and Accurate Multilevel Inversion of the Radon Transform , 1999, SIAM J. Appl. Math..

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  L. Maccone,et al.  Tomography , 1940, British medical journal.

[9]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[10]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[11]  P. Kuchment,et al.  On local tomography , 1995 .

[12]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[13]  W. R. Madych,et al.  Tomography, Approximate Reconstruction, and Continuous Wavelet Transforms , 1999 .

[14]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[15]  C. S. Sastry,et al.  REGION-OF-INTEREST TOMOGRAPHY USING A COMPOSITE FOURIER-WAVELET ALGORITHM , 2002 .

[16]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[17]  Andreas Rieder,et al.  Incomplete data problems in X-ray computerized tomography , 1989 .

[18]  Andreas Rieder,et al.  Approximate Inverse Meets Local Tomography , 2000 .