A convolution back projection algorithm for local tomography
暂无分享,去创建一个
[1] Tim Olson,et al. Wavelet localization of the Radon transform , 1994, IEEE Trans. Signal Process..
[2] Berkman Sahiner,et al. Region-of-interest tomography using exponential radial sampling , 1995, IEEE Trans. Image Process..
[3] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[4] K. J. Ray Liu,et al. Wavelet-based multiresolution local tomography , 1997, IEEE Trans. Image Process..
[5] Alfred K. Louis,et al. Approximate inverse for linear and some nonlinear problems , 1995 .
[6] Achi Brandt,et al. A Fast and Accurate Multilevel Inversion of the Radon Transform , 1999, SIAM J. Appl. Math..
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] L. Maccone,et al. Tomography , 1940, British medical journal.
[9] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[10] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[11] P. Kuchment,et al. On local tomography , 1995 .
[12] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[13] W. R. Madych,et al. Tomography, Approximate Reconstruction, and Continuous Wavelet Transforms , 1999 .
[14] R. Tibshirani,et al. An introduction to the bootstrap , 1993 .
[15] C. S. Sastry,et al. REGION-OF-INTEREST TOMOGRAPHY USING A COMPOSITE FOURIER-WAVELET ALGORITHM , 2002 .
[16] Erik L. Ritman,et al. Local Tomography II , 1997, SIAM J. Appl. Math..
[17] Andreas Rieder,et al. Incomplete data problems in X-ray computerized tomography , 1989 .
[18] Andreas Rieder,et al. Approximate Inverse Meets Local Tomography , 2000 .