Isolation of Secondary Metabolites from Achillea grandifolia Friv. (Asteraceae) and Main Compounds’ Effects on a Glioblastoma Cellular Model

This study aims at the isolation and structural determination of the secondary metabolites of the herbaceous perennial plant Achillea grandifolia Friv. (Asteraceae). The examination of the non-volatile content of the leaves and flowers of A. grandifolia afforded the isolation of sixteen secondary metabolites. On the basis of NMR spectra, the identified compounds included ten sesquiterpene lactones; three guaianolides—rupicolin A (1), rupicolin B (2), and (4S,6aS,9R,9aS,9bS)-4,6a,9-trihydroxy-9-methyl-3,6-dimethylene-3a,4,5,6,6a,9,9a,9b-octahydro-3H-azuleno [4,5-b]furan-2-one (3); two eudesmanolides—artecalin (4) and ridentin B (5); two sesquiterpene methyl esters—(1S,2S,4αR,5R,8R,8αS)-decahydro-1,5,8-trihydroxy-4α,8-dimethyl–methylene-2-naphthaleneacetic acid methylester (6) and 1β, 3β, 6α-trihydroxycostic acid methyl ester (7); three secoguaianolides—acrifolide (8), arteludovicinolide A (9), and lingustolide A (10); and an iridoid—loliolide (11). Moreover, five known flavonoids, i.e., apigenin, luteolin, eupatolitin, apigenin 7-O-glucoside, and luteolin 7-O-glucoside (12-16) were also purified from the aerial parts of the plant material. We also investigated the effect of rupicolin A (1) and B (2) (main compounds) on U87MG and T98G glioblastoma cell lines. An MTT assay was performed to define cytotoxic effects and to calculate the IC50, while flow cytometry was employed to analyze the cell cycle. The IC50 values of reduced viability during the 48 h treatment for compound (1) and (2) were 38 μM and 64 μM for the U87MG cells and 15 μM and 26 μM for the T98G cells, respectively. Both rupicolin A and B induced a G2/M cell cycle arrest.

[1]  D. Hadjipavlou-Litina,et al.  Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences , 2023, Plants.

[2]  J. Sharifi‐Rad,et al.  Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies , 2022, Cancer Cell International.

[3]  A. Kyritsis,et al.  An NF-κB- and Therapy-Related Regulatory Network in Glioma: A Potential Mechanism of Action for Natural Antiglioma Agents , 2022, Biomedicines.

[4]  Alicja K. Surowiak,et al.  Biological Activity of Selected Natural and Synthetic Terpenoid Lactones , 2021, International journal of molecular sciences.

[5]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[6]  Dongho Lee,et al.  Anti-Apoptotic and Antioxidant Effects of 3-Epi-Iso-Seco-Tanapartholide Isolated from Artemisia argyi against Iodixanol-Induced Kidney Epithelial Cell Death , 2020, Biomolecules.

[7]  D. Baker Achillea millefolium L. ethyl acetate fraction induces apoptosis and cell cycle arrest in human cervical cancer (HeLa) cells , 2020 .

[8]  O. Tsitsilonis,et al.  Cytotoxicity and Anti-cancer Activity of the Genus Achillea L. , 2020, Current medicinal chemistry.

[9]  G. Alexiou,et al.  Deglucohellebrin. A Potent Agent for Glioblastoma Treatment. , 2019, Anti-cancer agents in medicinal chemistry.

[10]  Jie-li Lv,et al.  Sesquiterpenoids from Artemisia argyi and their COXs inhibitory activities. , 2019, Fitoterapia.

[11]  H. Shao,et al.  Phytotoxic Compounds Isolated from Leaves of the Invasive Weed Xanthium spinosum , 2018, Molecules.

[12]  A. Ramírez de Molina,et al.  Identification of antitumoral agents against human pancreatic cancer cells from Asteraceae and Lamiaceae plant extracts , 2018, BMC Complementary and Alternative Medicine.

[13]  G. Ozek Phytochemical Characterization of Achillea grandifolia Friv. Essential Oil and Its Potent Against Oxidative Damage, Acetylcholinesterase and a-Amylase , 2018, Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering.

[14]  K. Karľová Accumulation of flavonoid compounds in flowering shoots of Achillea collina Becker ex. Rchb. Alba during flower development , 2018 .

[15]  M. Tekin,et al.  Phytochemicals, antioxidant, and antityrosinase activities of Achillea sivasica Çelik and Akpulat , 2017 .

[16]  G. Alexiou,et al.  Moschamine inhibits proliferation of glioblastoma cells via cell cycle arrest and apoptosis , 2017, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.

[17]  A. Akbarzadeh,et al.  Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. , 2017, Journal of ethnopharmacology.

[18]  Mouchira A. Choucry,et al.  Chemical composition and anticancer activity of Achillea fragrantissima (Forssk.) Sch. Bip. (Asteraceae) essential oil from Egypt , 2017 .

[19]  A. Hamed,et al.  Anti-inflammatory activity of highly oxygenated terpenoids from Achillea biebersteinii Afan , 2016, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[20]  Taha A. Hussien,et al.  CYTOTOXIC AND ANTIOXIDANT ACTIVITIES OF SECONDARY METABOLITES FROM PULICARIA UNDULATA , 2016 .

[21]  Nemanja Stanković,et al.  Antibacterial and Antioxidant Activity of Traditional Medicinal Plants from the Balkan Peninsula , 2016 .

[22]  M. Sarper,et al.  In vitro anti-oxidant, cytotoxic and pro-apoptotic effects of Achillea teretifolia Willd extracts on human prostate cancer cell lines , 2015, Pharmacognosy magazine.

[23]  P. Forgó,et al.  Antiproliferative Activity of Artemisia asiatica Extract and Its Constituents on Human Tumor Cell Lines , 2014, Planta Medica.

[24]  Mei Dong,et al.  A monoterpene and two sesquiterpenoids from the flowers of Achillea millefolium , 2013, Chemistry of Natural Compounds.

[25]  H. Gali-Muhtasib,et al.  Differential Growth Inhibitory Effects of Highly Oxygenated Guaianolides Isolated from the Middle Eastern Indigenous Plant Achillea falcata in HCT-116 Colorectal Cancer Cells , 2013, Molecules.

[26]  Zheng-Tao Wang,et al.  Chemical Constituents from the Aerial Parts of Gynura Bicolor , 2012, Natural product communications.

[27]  K. Oh,et al.  Sesquiterpenes from the leaves of Laurus nobilis L. , 2012, Phytochemistry.

[28]  Mei Dong,et al.  Millifolides A–C. New 1,10-Seco-guaianolides from the Flowers of Achillea millefolium , 2012 .

[29]  Mei Dong,et al.  Antitumour Activities of Sesquiterpene Lactones from Inula helenium and Inula japonica , 2012, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[30]  E. Akkol,et al.  Evaluation of the Wound Healing Potential of Achillea biebersteinii Afan. (Asteraceae) by In Vivo Excision and Incision Models , 2011, Evidence-based complementary and alternative medicine : eCAM.

[31]  S. Saeidnia,et al.  A review on phytochemistry and medicinal properties of the genus Achillea , 2011, Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.

[32]  V. Janulis,et al.  Variability of phenolic compounds in flowers of Achillea millefolium wild populations in Lithuania. , 2008, Medicina.

[33]  Ahmed Awad E. Ahmed,et al.  Anti-inflammatory Activity of New Guaiane Acid Derivatives from Achillea Coarctata , 2008 .

[34]  G. Stojanović,et al.  Chemotaxonomic Significance of the Balkan Achillea Volatiles , 2007 .

[35]  G. Stojanović,et al.  In vitro antimicrobial activity of extracts of four Achillea species: the composition of Achillea clavennae L. (Asteraceae) extract. , 2005, Journal of ethnopharmacology.

[36]  S. Macura,et al.  Sesquiterpene lactones and flavonoids of Achillea depressa , 2005 .

[37]  G. P. Sidyakin,et al.  Sesquiterpene lactones ofTanacetum santolina , 1980, Chemistry of Natural Compounds.

[38]  N. Abdullaev,et al.  A new lactone, isoridentin, fromAchillea biebersteinii , 1977, Chemistry of Natural Compounds.

[39]  T. Mabry,et al.  Ligustolide A and B, two novel sesquiterpenes with rare skeletons and three 1,10-seco-guaianolide derivatives from Achillea ligustica , 2003 .

[40]  İ. Çalış,et al.  Phenolic Compounds from Scutellaria pontica , 2002 .

[41]  J. Patora,et al.  Flavonoids from lemon balm (Melissa officinalis L., Lamiaceae). , 2002, Acta poloniae pharmaceutica.

[42]  E. Tsankova,et al.  Sesquiterpene Lactones from Achillea chrysocoma and Achillea coarctata , 2001, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[43]  E. Tsankova,et al.  Acrifolide, A Novel Sesquiterpene Lactone from Achillea crithmifolia , 2000 .

[44]  D. Lazari,et al.  Sesquiterpene Lactones from Centaurea Species: C. thessala subsp. drakiensis and C. attica subsp. attica. , 1999, Planta medica.

[45]  E. Tsankova,et al.  Terpenoids from Achillea clypeolata , 1998 .

[46]  E. Tsankova,et al.  Crithmifolide: a sesquiterpene lactone from Achillea crithmifolia , 1998 .

[47]  J. Pedro,et al.  Norisoprenoids from Centaurea aspera and C. salmantica , 1993 .

[48]  S. Macura,et al.  Sesquiterpene lactones from Achillea crithmifolia , 1993 .

[49]  E. Haslinger,et al.  [Sesquiterpenelactones of Achillea setacea with antiphlogistic activity]. , 1991, Planta medica.

[50]  R. Tan,et al.  Sesquiterpene lactones from Artemisia rutifolia , 1991 .

[51]  R. Tan,et al.  Sesquiterpene lactones from Artemisia ludoviciana , 1991 .

[52]  F. Bohlmann,et al.  Glaucolides and guaianolides from Artemisia afra , 1988 .

[53]  K. Valant-Vetschera,et al.  Flavonoid aglycones from the leaf surfaces of some Achillea species , 1986 .

[54]  H. Greger,et al.  Piperidides and other amides from Achillea species , 1982 .

[55]  F. Shafizadeh,et al.  Sesquiterpene lactones and systematics of the genus Artemisia , 1979 .

[56]  T. A. Geissman,et al.  Ridentin-β: An eudesmanolide from Artemisia tripartita ssp. rupicola☆ , 1973 .

[57]  T. A. Geissman,et al.  Sesquiterpene lactones of Artemisia. Artecalin from A. californica and A. tripartita ssp. rupicola , 1969 .