Halogen bonding in solution: thermodynamics and applications.

Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

[1]  J. Kochi,et al.  Charge-transfer interactions of amines with tetrahalomethanes. X-ray crystal structures of the donor-acceptor complexes of quinuclidine and diazabicyclo [2.2.2]octane with carbon tetrabromide , 1987 .

[2]  P. A. Hill,et al.  Experimental studies of the 13C NMR of iodoalkynes in Lewis-basic solvents. , 2004, Journal of Organic Chemistry.

[3]  S. Lindeman,et al.  The charge-transfer motif in crystal engineering. Self-assembly of acentric (diamondoid) networks from halide salts and carbon tetrabromide as electron-donor/acceptor synthons. , 2003, Journal of the American Chemical Society.

[4]  M. Chudziński,et al.  Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. , 2011, Journal of the American Chemical Society.

[5]  V. Lindsay,et al.  Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane alpha-amino acids. , 2009, Journal of the American Chemical Society.

[6]  P. Metrangolo,et al.  2-Iodo-imidazolium receptor binds oxoanions via charge-assisted halogen bonding. , 2012, Organic & biomolecular chemistry.

[7]  A. Karpfen Theoretical Characterization of the Trends in Halogen Bonding , 2007 .

[8]  S. Huber,et al.  Halogen-bond-induced activation of a carbon-heteroatom bond. , 2011, Angewandte Chemie.

[9]  O. Hassel,et al.  Structural aspects of interatomic charge-transfer bonding. , 1970, Science.

[10]  R. S. Mulliken Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents1 , 1950 .

[11]  Anthony C. Legon,et al.  Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase: A Systematic Case for the Halogen Analogue B⋅⋅⋅XY of the Hydrogen Bond B⋅⋅⋅HX , 1999 .

[12]  C. Laurence,et al.  1-Iodoacétylènes. IV. Relations structure–réactivité pour la complexation des 1-iodoacétylènes substitués avec des bases de Lewis , 1983 .

[13]  P. Metrangolo,et al.  A halogen-bonding-based heteroditopic receptor for alkali metal halides. , 2005, Journal of the American Chemical Society.

[14]  M. Erdélyi,et al.  Halogen bonding in solution. , 2012, Chemical Society reviews.

[15]  P. Beer,et al.  Crystallographic Implications for the Design of Halogen Bonding Anion Receptors , 2011 .

[16]  H. Togo,et al.  Synthetic Use of Molecular Iodine for Organic Synthesis , 2006 .

[17]  T. Dziembowska,et al.  1-Iodoacetylenes. 1. Spectroscopic evidence of their complexes with Lewis bases. A spectroscopic scale of soft basicity , 1981 .

[18]  S. Matile,et al.  Ditopic ion transport systems: anion-π interactions and halogen bonds at work. , 2011, Angewandte Chemie.

[19]  Pierangelo Metrangolo,et al.  Fluorine-Centered Halogen Bonding: A Factor in Recognition Phenomena and Reactivity , 2011 .

[20]  P. Beer,et al.  A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. , 2011, Angewandte Chemie.

[21]  M. Chudziński,et al.  Correlations between computation and experimental thermodynamics of halogen bonding. , 2012, The Journal of organic chemistry.

[22]  C. Hunter,et al.  Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. , 2009, Chemical communications.

[23]  R. Pascal,et al.  Molecular Association Mediated by Nitrogen-Chlorine Donor-Acceptor Interactions , 1995 .

[24]  Weiliang Zhu,et al.  Halogen bonding--a novel interaction for rational drug design? , 2009, Journal of medicinal chemistry.

[25]  P Shing Ho,et al.  Halogen bonds as orthogonal molecular interactions to hydrogen bonds. , 2009, Nature chemistry.

[26]  Mark S. Taylor,et al.  Measurements of weak halogen bond donor abilities with tridentate anion receptors. , 2010, Chemical communications.

[27]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[29]  Mark S. Taylor,et al.  A tridentate halogen-bonding receptor for tight binding of halide anions. , 2010, Angewandte Chemie.

[30]  F. Guthrie,et al.  XXVIII.—On the iodide of iodammonium , 1863 .

[31]  Anthony C Legon,et al.  The halogen bond: an interim perspective. , 2010, Physical chemistry chemical physics : PCCP.

[32]  Nobuo Shimma,et al.  Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments , 2011, ChemMedChem.

[33]  C. Urch,et al.  Experimental Measurement of Noncovalent Interactions Between Halogens and Aromatic Rings , 2004, Chembiochem : a European journal of chemical biology.

[34]  J. Liddle,et al.  Organocatalytic aziridine synthesis using F+ salts. , 2009, Organic letters.

[35]  T. Takeuchi,et al.  Molecularly imprinted polymers with halogen bonding-based molecular recognition sites , 2005 .

[36]  Pierangelo Metrangolo,et al.  Halogen bonding in halocarbon-protein complexes: a structural survey. , 2011, Chemical Society reviews.

[37]  Paulo J. Costa,et al.  Halogen bond anion templated assembly of an imidazolium pseudorotaxane. , 2010, Angewandte Chemie.

[38]  Zhan-Ting Li,et al.  C-H···O hydrogen bonding induced triazole foldamers: efficient halogen bonding receptors for organohalogens. , 2012, Angewandte Chemie.

[39]  Jürgen Gräfenstein,et al.  Symmetric halogen bonding is preferred in solution. , 2012, Journal of the American Chemical Society.

[40]  J. Rebek,et al.  Nitrogen−Halogen Intermolecular Forces in Solution , 1999 .

[41]  M. Berthelot,et al.  The diiodine basicity scale: toward a general halogen-bond basicity scale. , 2011, Chemistry.

[42]  D. Herschlag,et al.  Evaluating the potential for halogen bonding in the oxyanion hole of ketosteroid isomerase using unnatural amino acid mutagenesis. , 2009, ACS chemical biology.

[43]  S. Huber,et al.  Isothermal calorimetric titrations on charge-assisted halogen bonds: role of entropy, counterions, solvent, and temperature. , 2012, Journal of the American Chemical Society.

[44]  O. Hucke,et al.  Combined X-ray, NMR, and Kinetic Analyses Reveal Uncommon Binding Characteristics of the Hepatitis C Virus NS3-NS4A Protease Inhibitor BI 201335* , 2011, The Journal of Biological Chemistry.

[45]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .

[46]  L. Brammer,et al.  Energetics of halogen bonding of group 10 metal fluoride complexes. , 2011, Journal of the American Chemical Society.

[47]  P. Metrangolo,et al.  Perfluorocarbon–hydrocarbon self-assembly: Part 16. 19F NMR study of the halogen bonding between halo-perfluorocarbons and heteroatom containing hydrocarbons , 2002 .

[48]  P. S. Ho,et al.  Assaying the Energies of Biological Halogen Bonds , 2011 .

[49]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[50]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[51]  A. Allred,et al.  Halogen Complexes. III. The Association of 2,4,6-Trimethylpyridine and Trifluoroiodomethane , 1965 .

[52]  M. Garneau,et al.  Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3 protease (BI 201335). , 2010, Journal of medicinal chemistry.

[53]  A. I. Popov,et al.  Chemistry of halogens and a polyhalides. XXX. Influence of solvent properties on the formation of pyridine-iodine charge-transfer complexes , 1969 .

[54]  P. Beer,et al.  Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. , 2010, Journal of the American Chemical Society.

[55]  Mohammed G. Sarwar,et al.  Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. , 2010, Journal of the American Chemical Society.

[56]  S. Fukuzumi,et al.  Electrophilic additions to olefins. A new approach to unifying the mechanisms of bromination and oxymercuration , 1981 .

[57]  Pavel Hobza,et al.  Investigations into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. , 2008, Journal of chemical theory and computation.

[58]  Peter Murray-Rust,et al.  Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond , 1986 .

[59]  L. Sunderlin,et al.  A new flowing afterglow-guided ion beam tandem mass spectrometer. Applications to the thermochemistry of polyiodide ions , 1997 .