Pseudocodeword-based Decoding of Quantum Stabilizer Codes

It has been shown that graph-cover pseudocodewords can be used to characterize the behavior of sum-product algorithm (SPA) decoding of classical codes. In this paper, we leverage and adapt these results to analyze SPA decoding of quantum stabilizer codes. We use the obtained insights to formulate modifications to the SPA that overcome some of its weaknesses.

[1]  David Poulin,et al.  Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes. , 2018, Physical review letters.

[2]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[3]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[4]  Henry D. Pfister,et al.  On the relevance of graph covers and zeta functions for the analysis of SPA decoding of cycle codes , 2013, 2013 IEEE International Symposium on Information Theory.

[5]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[6]  James R. Wootton,et al.  Efficient Markov chain Monte Carlo algorithm for the surface code , 2013, 1302.2669.

[7]  Pascal O. Vontobel,et al.  LP Decoding of Quantum Stabilizer Codes , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[8]  Pascal O. Vontobel,et al.  Factor-graph representations of stabilizer quantum codes , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[9]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[10]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[11]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[12]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[13]  Pascal O. Vontobel,et al.  Counting in Graph Covers: A Combinatorial Characterization of the Bethe Entropy Function , 2010, IEEE Transactions on Information Theory.

[14]  Henk Wymeersch,et al.  Uniformly reweighted belief propagation: A factor graph approach , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.