Effect of side‐chain length on the electrospinning of perfluorosulfonic acid ionomers

The effect of the side-chain length (short side chain and long side chain, SSC and LSC, respectively) of perfluorosulfonic acid (PFSA) ionomers on the properties of nanofibers obtained by electrospinning ionomer dispersions in high dielectric constant liquids has been investigated with a view to obtaining electrospun webs as components of fuel cell membranes. Ranges of experimental conditions for electrospinning LSC and SSC PFSAs have been explored, with a scoping of solvents, carrier polymer and PFSA ionomer concentrations, and carrier polymer molecular weight. Under optimal conditions, the electrospun mats derived from SSC and from LSC PFSA show distinct fiber dimensions that arise from the different chain lengths of the respective ionomers. Enhanced interchain interactions in SSC PFSA with low equivalent weight compared to LSC PFSA result in a considerably lower average fiber diameter and a markedly narrower fiber size distribution. The proton conductivity of nanofiber mats of SSC and LSC PFSA with equivalent weights of 830 and 900 g mol−1, respectively, are 102 and 58 mS cm−1 at 80°C and 95% relative humidity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

[1]  D. J. Jones Membrane materials and technology for low temperature fuel cells , 2012 .

[2]  Deborah J. Jones,et al.  Electrospinning: designed architectures for energy conversion and storage devices , 2011 .

[3]  Deborah J. Jones,et al.  On Electrospinning of PFSA: A Comparison between Long and Short-Side Chain Ionomers , 2011 .

[4]  Bin Dong,et al.  Super proton conductive high-purity nafion nanofibers. , 2010, Nano letters.

[5]  P. Mather,et al.  Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers , 2010 .

[6]  Lei Jiang,et al.  Multichannel TiO2 hollow fibers with enhanced photocatalytic activity , 2010 .

[7]  Yiu-Wing Mai,et al.  Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties , 2010 .

[8]  S. Kundu,et al.  Electrospinning: a fascinating fiber fabrication technique. , 2010, Biotechnology advances.

[9]  M. Shaw,et al.  Electrospinning and characterization of highly sulfonated polystyrene fibers , 2010 .

[10]  D. Brandell,et al.  Molecular dynamics modeling of proton transport in nafion and hyflon nanostructures. , 2010, The journal of physical chemistry. B.

[11]  S. Jiang,et al.  HPW/MCM‐41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Proton‐Exchange Membranes for Elevated‐Temperature Fuel Cells , 2010, Advanced materials.

[12]  G. Sotzing,et al.  Electrospinning nanoribbons of a bioengineered silk-elastin-like protein (SELP) from water , 2009 .

[13]  Shengmin Guo,et al.  Electrospun Nafion Nanofiber for Proton Exchange Membrane Fuel Cell Application , 2009 .

[14]  M. Marrony,et al.  Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions , 2008 .

[15]  S. Ramakrishna,et al.  Electrospun nanofibers in energy and environmental applications , 2008 .

[16]  Patrick T. Mather,et al.  Nanofiber Network Ion-Exchange Membranes , 2008 .

[17]  Stephen J. Paddison,et al.  Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells , 2008 .

[18]  I. Hristov,et al.  Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer. , 2008, The journal of physical chemistry. B.

[19]  Y. Elabd,et al.  Electrospinning and Solution Properties of Nafion and Poly(acrylic acid) , 2008 .

[20]  A. Ajji,et al.  Fabrication and Characterization of Ionic Conducting Nanofibers , 2007 .

[21]  Moon Jeong Park,et al.  Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation. , 2007, Nano letters.

[22]  M. Frey,et al.  The Development of New Membranes for Proton Exchange Membrane Fuel Cells , 2007 .

[23]  A. Varesano,et al.  Crimped polymer nanofibres by air-driven electrospinning , 2007 .

[24]  A. Yarin,et al.  Co-electrospinning of core-shell fibers using a single-nozzle technique. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  Lei Jiang,et al.  Bio-mimic multichannel microtubes by a facile method. , 2007, Journal of the American Chemical Society.

[26]  P. Jannasch,et al.  On the Prospects for Phosphonated Polymers as Proton-Exchange Fuel Cell Membranes , 2007 .

[27]  Xiufeng Hao,et al.  Fabrication of sulfonated poly(ether ether ketone ketone) membranes with high proton conductivity , 2006 .

[28]  H. Okuzaki,et al.  Spontaneous Formation of Poly(p-phenylenevinylene) Nanofiber Yarns through Electrospinning of a Precursor , 2006 .

[29]  M. Feldman,et al.  Electrospun Polyaniline/Poly(methyl methacrylate)‐Derived Turbostratic Carbon Micro‐/Nanotubes , 2006 .

[30]  Vincenzo Arcella,et al.  Hyflon Ion Membranes for Fuel Cells , 2005 .

[31]  Vincenzo Arcella,et al.  Proton exchange membranes based on the short-side-chain perfluorinated ionomer , 2005 .

[32]  S. Paddison,et al.  Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. , 2005, The journal of physical chemistry. A.

[33]  Gary E. Wnek,et al.  Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit , 2005 .

[34]  Younan Xia,et al.  Electrospinning of nanofibers with core-sheath, hollow, or porous structures , 2005 .

[35]  Younan Xia,et al.  Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. , 2004, Small.

[36]  C. Wieser,et al.  Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits , 2004 .

[37]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[38]  G. Wnek,et al.  Characterization of electrosprayed Nafion films , 2004 .

[39]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[40]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[41]  Andreas Greiner,et al.  Compound Core–Shell Polymer Nanofibers by Co‐Electrospinning , 2003 .

[42]  V. Arcella,et al.  High Performance Perfluoropolymer Films and Membranes , 2003, Annals of the New York Academy of Sciences.

[43]  H. Kim,et al.  Influence of a mixing solvent with tetrahydrofuran and N,N‐dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats , 2002 .

[44]  Burak Erman,et al.  Electrospinning of polyurethane fibers , 2002 .

[45]  Deborah J. Jones,et al.  Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications , 2001 .

[46]  G. Gebel,et al.  Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution , 2000 .

[47]  Robert B. Moore,et al.  Chemical and morphological properties of solution-cast perfluorosulfonate ionomers , 1988 .