Down-sizing in galaxy formation at z~1

We use the deep wide-field optical imaging data of the Subaru/XMM‐Newton Deep Survey to discuss the luminosity- (mass-)dependent galaxy colours down to z � = 25.0 (5 × 10 9 h −2 70 M� ) for z ∼ 1 galaxies in colour-selected high-density regions. We find an apparent absence of galaxies on the red colour‐magnitude sequence below z � ∼ 24.2, corresponding to ∼M ∗ + 2( ∼ 10 10 M� ) with respect to passively evolving galaxies at z ∼ 1. Galaxies brighter than M ∗ − 0.5 (8 × 10 10 M� ), however, are predominantly red passively evolving systems, with few blue star-forming galaxies at these magnitudes. This apparent age gradient, where massive galaxies are dominated by old stellar populations while less massive galaxies have more extended star formation histories, supports the ‘downsizing’ idea where the mass of galaxies hosting star formation decreases as the Universe ages. Combined with the lack of evolution in the shape of the stellar mass function for massive galaxies since at least z ∼ 1, it appears that galaxy formation processes (both star formation and mass assembly) should have occurred in an accelerated way in massive systems in highdensity regions, while these processes should have been slower in smaller systems. This result provides an interesting challenge for modern cold dark matter based galaxy formation theories which predict later formation epochs of massive systems, commonly referred to as ‘bottom-up’.

[1]  D. Asher,et al.  Meteor observations in Japan: new implications for a Taurid meteoroid swarm , 1998 .

[2]  R. Carlberg,et al.  The CNOC Cluster Redshift Survey Catalogs. I. Observational Strategy and Data Reduction Techniques , 1996 .

[3]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[4]  The colour–magnitude relation for galaxies in the Coma cluster , 2001, astro-ph/0106337.

[5]  R. Bower,et al.  Reconstructing the history of star formation in rich cluster cores , 2000, astro-ph/0005397.

[6]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[7]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[8]  The colour-magnitude relation as a constraint on the formation of rich cluster galaxies , 1998, astro-ph/9805290.

[9]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[10]  A. Sandage,et al.  The color - absolute magnitude relation for E and S0 galaxies. I. Calibration and tests for universality using Virgo and eight other nearby clusters. , 1977 .

[11]  S. Okamura,et al.  Galaxy Population in a Cluster of Galaxies around the Radio Galaxy 3C 324 at z = 1.2 , 2001, astro-ph/0110597.

[12]  R. Ellis,et al.  Precision photometry of early-type galaxies in the Coma and Virgo clusters: a test of the universality of the colour–magnitude relation – II. Analysis , 1992 .

[13]  Discovery of a large-scale structure at redshift ~=5 , 2003 .

[14]  R. Cen,et al.  Cold dark matter cosmogony with hydrodynamics and galaxy formation : galaxy properties at redshift zero , 1993 .

[15]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[16]  S. Okamura,et al.  A Comparison of the Galaxy Populations in the Coma and Distant Clusters: The Evolution of k+a Galaxies and the Role of the Intracluster Medium , 2003, astro-ph/0309449.

[17]  Galaxy Number Counts in the Subaru Deep Field: Multiband Analysis in a Hierarchical Galaxy Formation Model , 2002, astro-ph/0207483.

[18]  A. Cimatti,et al.  The K20 survey. V. The evolution of the near-IR Luminosity Function , 2003, astro-ph/0302599.

[19]  Christopher J. Miller,et al.  Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey , 2002, astro-ph/0210193.

[20]  I. Smail,et al.  The Homogeneity of Spheroidal Populations in Distant Clusters , 1996, astro-ph/9607154.

[21]  Caltech,et al.  The evolution of galaxy mass in hierarchical models , 2002, astro-ph/0203051.

[22]  M. Dickinson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters , 1997, astro-ph/9708037.

[23]  M. Gladders,et al.  A New Method For Galaxy Cluster Detection. I. The Algorithm , 2000, astro-ph/0004092.

[24]  J. Kneib,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius , 2003, astro-ph/0303267.

[25]  Richard G. Bower,et al.  A Bayesian classifier for photometric redshifts: identification of high-redshift clusters , 1999 .

[26]  S. Okamura,et al.  Subaru Deep Survey. III. Evolution of Rest-Frame Luminosity Functions Based on the Photometric Redshifts for a K′-Band-Selected Galaxy Sample* , 2002, astro-ph/0209445.

[27]  D. Fabricant,et al.  The color-magnitude relation in CL 1358+62 at z=0.33: Evidence for significant evolution in the S0 population , 1998, astro-ph/9801190.

[28]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[29]  The environmental dependence of the infrared luminosity and stellar mass functions , 2001, astro-ph/0104042.

[30]  Oxford,et al.  The COMBO-17 survey: Evolution of the galaxy luminosity function from 25,000 galaxies with 0.2 < z < 1.2 , 2002, astro-ph/0208345.

[31]  Tadayuki Kodama,et al.  The Ks-band luminosity and stellar mass functions of galaxies in z ∼ 1 clusters , 2003, astro-ph/0308130.

[32]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[33]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[34]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[35]  T. Kitayama,et al.  Criteria for the formation of Population III objects in the ultraviolet background radiation , 2001, astro-ph/0105293.

[36]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[37]  Guinevere Kauffmann,et al.  The K-band luminosity function at z = 1: a powerful constraint on galaxy formation theory , 1998 .

[38]  The Transformation of Galaxies within the Large-Scale Structure around a z = 0.41 Cluster , 2001, astro-ph/0110354.

[39]  et al,et al.  The Luminosity Function of Galaxies from SDSS Commissioning Data , 2000 .

[40]  Christopher J. Miller,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[41]  A. Oemler,et al.  The Evolution of galaxies in clusters. 5. A Study of populations since Z approximately equal to 0.5 , 1984 .

[42]  P. Hall,et al.  Multiwavelength Mapping of Galaxy Formation and Evolution , 2005 .

[43]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[44]  M. Rees,et al.  On dwarf elliptical galaxies and the faint blue counts , 1992 .