New predictor‐corrector scheme for solving nonlinear differential equations with Caputo‐Fabrizio operator

MSC Classification: 34A08; 65D15; 65L99 In this paper, we develop a new, simple, and accurate scheme to obtain approximate solution for nonlinear differential equation in the sense of Caputo-Fabrizio operator. To derive this new predictor-corrector scheme, which suits on Caputo-Fabrizio operator, firstly, we obtain the corresponding initial value problem for the differential equation in the Caputo-Fabrizio sense. Hence, by fractional Euler method and fractional trapeziodal rule, we obtain the predictor formula as well as corrector formula. Error analysis for this new method is derived. To test the validity and simplicity of this method, some illustrative examples for nonlinear differential equations are solved.

[1]  A. Atangana,et al.  Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios , 2018 .

[2]  Mohsen Zayernouri,et al.  Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system , 2016, J. Comput. Phys..

[3]  Devendra Kumar,et al.  A fractional epidemiological model for computer viruses pertaining to a new fractional derivative , 2018, Appl. Math. Comput..

[4]  José Francisco Gómez-Aguilar,et al.  Modeling diffusive transport with a fractional derivative without singular kernel , 2016 .

[5]  Ayesha Sohail,et al.  Stability analysis for fractional‐order partial differential equations by means of space spectral time Adams‐Bashforth Moulton method , 2018 .

[6]  A. Atangana,et al.  Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative , 2017 .

[7]  Mehdi Dehghan,et al.  The dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equations , 2016 .

[8]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[9]  A. Atangana,et al.  Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction–diffusion systems , 2018 .

[10]  Abdon Atangana,et al.  Numerical approximation of Riemann‐Liouville definition of fractional derivative: From Riemann‐Liouville to Atangana‐Baleanu , 2018 .

[11]  Rozaini Roslan,et al.  Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes , 2017, Comput. Math. Appl..

[12]  Kolade M. Owolabi,et al.  Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann‐Liouville derivative , 2018 .

[13]  Dumitru Baleanu,et al.  Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular , 2016 .

[14]  Kolade M. Owolabi,et al.  Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense , 2018 .

[15]  A. Atangana,et al.  New numerical approach for fractional differential equations , 2017, 1707.08177.

[16]  Jian Rong Loh,et al.  On the new properties of Caputo–Fabrizio operator and its application in deriving shifted Legendre operational matrix , 2018, Applied Numerical Mathematics.

[17]  Kolade M. Owolabi,et al.  Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative , 2018 .

[18]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[19]  J. A. Tenreiro Machado,et al.  A critical analysis of the Caputo-Fabrizio operator , 2018, Commun. Nonlinear Sci. Numer. Simul..

[20]  Moien Ahmad Ansari,et al.  Chaos control and synchronization of fractional order delay‐varying computer virus propagation model , 2016 .

[21]  A. Atangana,et al.  Analysis of Mathematics and Numerical Pattern Formation in Superdiffusive Fractional Multicomponent System , 2017 .

[22]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[23]  A. Atangana,et al.  Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions , 2017, Advances in Difference Equations.

[24]  Hossein Jafari,et al.  Error estimate of the MQ-RBF collocation method for fractional differential equations with Caputo–Fabrizio derivative , 2017 .

[25]  K. M. Owolabi Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator , 2018 .

[26]  José Francisco Gómez-Aguilar,et al.  A mathematical model of circadian rhythms synchronization using fractional differential equations system of coupled van der Pol oscillators , 2018 .

[27]  Badr Saad T. Alkahtani,et al.  Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order , 2016 .

[28]  Bongsoo Jang,et al.  A high-order predictor-corrector method for solving nonlinear differential equations of fractional order , 2017 .