The dynamics of the reaction OH + D2 → HOD + D: Crossed beam experiments and quantum mechanical scattering calculations on ab initio potential energy surfaces

Abstract The dynamics of the reaction OH + D 2 → HOD + D has been investigated in a crossed molecular beam experiment at a collision energy of 6.3 kcal/mol. From laboratory product angular and velocity distribution measurements, center-of-mass product translational energy and angular distributions were determined. The HOD angular distribution is strongly backward scattered (with respect to the OH direction), which reflects a direct rebound dynamics, and the average fraction of total available energy released into translation is 0.34, indicating a high degree of product internal excitation. These results are compared with the predictions of two different ab initio potential energy surfaces within quantum mechanical scattering calculations based on the rotating bond approximation. It is concluded that a new surface, obtained from large scale high-quality electronic structure calculations, represents a significant improvement with respect to the previous Walch-Dunning-Schatz-Elgersma potential energy surface.

[1]  N. Brown,et al.  A molecular dynamics study of the reaction H2+OH→H2O+H , 1985 .

[2]  E. A. McCullough,et al.  Molecular Beam Study of Polyatomic Free Radical Reactions. CH3+Cl2 and Br2 , 1972 .

[3]  W. Fite,et al.  Associative ionization of Ti, Zr, Gd, and Thin collisions with O and O2 , 1974 .

[4]  J. Bowman,et al.  Mode selectivity in reactions of H with HOD(100), HOD(001), and HOD(002) , 1992 .

[5]  K. Sköld,et al.  A mechanical correlation chopper for thermal neutron spectroscopy , 1968 .

[6]  A. Ravishankara,et al.  Kinetic study of the reaction of hydroxyl with hydrogen and deuterium from 250 to 1050 K , 1981 .

[7]  M. Baer,et al.  A three dimensional quantum mechanical theory to treat tetra‐atom reactions: State‐to‐state cross sections for the H2+OH→H2O+H process , 1994 .

[8]  P. Brimblecombe,et al.  Chemistry of Atmospheres. , 1986 .

[9]  K. Honda,et al.  Reaction of H2O with H produced by the 266 nm photolysis of HI , 1991 .

[10]  D. Clary FOUR-ATOM REACTION DYNAMICS , 1994 .

[11]  David C. Clary,et al.  Quantum scattering calculations on H2O+H→H2+OH and isotopes: Rotational distributions and cross sections , 1993 .

[12]  G. Schatz Quasiclassical trajectory studies of state-resolved bimolecular reactions. Vibrational distributions in triatomic products , 1995 .

[13]  Nadia Balucani,et al.  Reactive scattering of atoms and radicals , 1995 .

[14]  D. Clary,et al.  Quantum theory of planar four‐atom reactions , 1994 .

[15]  J. E. Spencer,et al.  The production and subsequent relaxation of vibrationally excited OH in the reaction of atomic oxygen with HBr , 1977 .

[16]  M. Baer,et al.  A three‐dimensional quantum mechanical study of the H2+H+2 system: Calculation of reactive and charge transfer cross sections , 1990 .

[17]  G. Schatz,et al.  A quasiclassical trajectory study of the state-to-state dynamics of atomic hydrogen + water .fwdarw. hydroxyl + molecular hydrogen , 1984 .

[18]  K. Janda,et al.  The HeCl2 potential: A combined scattering‐spectroscopic study , 1993 .

[19]  Richard N. Zare,et al.  Bond‐specific chemistry: OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001) , 1991 .

[20]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[21]  R. Zare,et al.  Integral rate constant measurements of the reaction H +D2O → HD(v′, j′)+OD , 1993 .

[22]  R. V. Vander Wal,et al.  State- and bond-selected photodissociation and bimolecular reaction of water , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[23]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[24]  R. Zare,et al.  Reaction Product Imaging: The H + D2 Reaction , 1993, Science.

[25]  P. Andresen,et al.  Λ‐doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2 , 1991 .

[26]  J. Wolfrum,et al.  REACTION DYNAMICS STUDIES OF A SIMPLE TETRAATOMIC SYSTEM : AA + BA A + ABA , 1994 .

[27]  N. Handy,et al.  Cumulative reaction probabilities for OH+H2→H2O+H and ClH+Cl→Cl+HCl from a knowledge of the anharmonic force field , 1993 .

[28]  Deborah G. Sauder,et al.  Internal state distribution of OD produced from the O(3P)+ND2 reaction , 1991 .

[29]  Kopin Liu,et al.  The Chemical Dynamics and Kinetics of Small Radicals: Part 1 , 1996 .

[30]  N. Balakrishnan,et al.  Integral cross sections and rate constants for the reaction OH+H2→H2O+H: A semiclassical wave packet approach , 1994 .

[31]  J. Bowman,et al.  An adiabatic-bend Franck-Condon model for final rotational distributions in the H + H2O and H + D2O reactions , 1993 .

[32]  D. Neumark,et al.  Molecular beam studies of the F+H2 reaction , 1985 .

[33]  D. Truhlar Potential Energy Surfaces and Dynamics Calculations , 1981 .

[34]  Ian W. M. Smith,et al.  Rate measurements of reactions of OH by resonance absorption. Part 3.—Reactions of OH with H2, D2 and hydrogen and deuterium halides , 1974 .

[35]  J. Norris,et al.  On superexchange electron‐transfer reactions involving three paraboloidal potential surfaces in a two‐dimensional reaction coordinate , 1994 .

[36]  Daniel Neuhauser,et al.  Fully quantal initial‐state‐selected reaction probabilities (J=0) for a four‐atom system: H2(v=0, 1, j=0)+OH(v=0,1, j=0)→H+H2O , 1994 .

[37]  R. Wyatt,et al.  Experimental Studies and Theoretical Predictions for the H + D2 → > HD + D Reaction , 1995, Science.

[38]  K. Kleinermanns,et al.  H + H2O→OH + H2: absolute reaction cross sections and OH state distributions , 1992 .

[39]  D. Truhlar,et al.  Statistical‐diabatic model for state‐selected reaction rates. Theory and application of vibrational‐mode correlation analysis to OH(nOH)+H2(nHH)→H2O+H , 1982 .

[40]  R. Zellner,et al.  Vibrational rate enhancement in the reaction OH + H2(ν = 1) → H2O + H , 1981 .

[41]  D. Clary Quantum scattering calculations on the OH+H2(v=0,1), OH+D2, and OD+H2 reactions , 1992 .

[42]  Qiyan Sun,et al.  Reduced dimensionality quantum reactive scattering: H2+CN→H+HCN , 1990 .

[43]  P. Knowles,et al.  A full-CI study of the energetics of the reaction F + H2 → HF+H , 1991 .

[44]  Thom H. Dunning,et al.  A theoretical study of the potential energy surface for OH+H2 , 1980 .

[45]  Joel M. Bowman,et al.  Reduced dimensionality theory of quantum reactive scattering , 1991 .

[46]  M. Lester,et al.  Stabilization of reactants in a weakly bound complex: OH–H2 and OH–D2 , 1995 .

[47]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[48]  J. Logan,et al.  Molecular beam studies of methyl radical reactions with halogen molecules: Product angular and velocity distributions , 1976 .

[49]  Dong H. Zhang,et al.  Accurate quantum calculations for H2+OH→H2O+H: Reaction probabilities, cross sections, and rate constants , 1994 .

[50]  G. N. Robinson,et al.  Crossed molecular beam studies of the reactions of methyl radicals with iodoalkanes , 1988 .

[51]  Donald G. Truhlar,et al.  Polyatomic canonical variational theory for chemical reaction rates. Separable‐mode formalism with application to OH+H2→H2O+H , 1982 .

[52]  J. Bowman,et al.  Quantum calculations of mode specificity in reactions of H with HOD and H2O , 1993 .

[53]  R. B. Cohen,et al.  Chemi-ionization reactions of Ba, Sr, Ca with OH , 1975 .

[54]  L. F. Phillips,et al.  Chemistry of the Atmosphere , 1976 .

[55]  A. Baram,et al.  Adiabaticity of the nonreactive bond in atom-triatom reactions: a quantum mechanical study of the hydrogen atom + water .fwdarw. hydroxyl + hydrogen system , 1993 .

[56]  A. D. Isaacson Global potential energy surfaces from limited ab initio data , 1992 .

[57]  W. Miller,et al.  Initial state‐selected reaction probabilities for OH+H2→H+H2O and photodetachment intensities for HOH− 2 , 1994 .

[58]  George C. Schatz,et al.  A quasi-classical trajectory study of product vibrational distributions in the OH + H2 → H2O + H reaction , 1980 .

[59]  M. Paniagua,et al.  A new functional form to obtain analytical potentials of triatomic molecules , 1992 .

[60]  David C. Clary,et al.  Quantum reactive scattering of four‐atom reactions with nonlinear geometry: OH+H2→H2O+H , 1991 .

[61]  R. Grice,et al.  Reactive scattering of methyl radicals CH3+ ICl, IBr, I2 , 1973 .

[62]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[63]  Richard G. Compton,et al.  Research in Chemical Kinetics , 1993 .

[64]  D. Neumark,et al.  Molecular beam studies of the F+D2 and F+HD reactions , 1985 .

[65]  George C. Schatz,et al.  A quasiclassical trajectory study of reagent vibrational excitation effects in the OH+H2→H2O+H reaction , 1981 .

[66]  F. Fleming Crim,et al.  Bond-selected bimolecular chemistry : H + HOD(4νOH)→OD + H2 , 1990 .

[67]  T. Truong Direct ab initio dynamics studies of vibrational‐state selected reaction rate of the OH+H2→H+H2O reaction , 1995 .

[68]  W. Fite,et al.  Electronic and Atomic Collisions. , 1965, Science.

[69]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[70]  R. Macdonald,et al.  A crossed‐beam study of the state‐resolved dynamics of CH(X 2Π) + D2. II. The isotopic exchange channel , 1990 .

[71]  S. Sibener,et al.  Development of a supersonic O(3PJ), O(1D2) atomic oxygen nozzle beam source , 1980 .

[72]  J. Bowman,et al.  Reduced dimensionality quantum calculations of mode specificity in OH+H2↔H2O+H , 1992 .

[73]  J. Jeffries,et al.  Vibrational energy transfer in OH X 2Πi, v=2 and 1 , 1990 .

[74]  Antonio Laganà,et al.  Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules , 1989 .

[75]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[76]  J. Wolfrum,et al.  The effect of reagent translation on the reaction dynamics and the absolute reaction cross section of H+H2O→OH+H2 , 1994 .

[77]  Quantum-classical reaction path/surface model for chemical reactions. III. The reaction H2+OH→H2O+H , 1990 .

[78]  J. Polanyi Some Concepts in Reaction Dynamics , 1987, Science.

[79]  R. Macdonald,et al.  Fine‐structure selectivity in polyatomic reaction products: CN(X 2Σ+,v=0,N=0,1)+O2→NCO(X̃ 2Π3/2, 0010,J,e/f)+O , 1990 .

[80]  David C. Clary,et al.  Application of hyperspherical coordinates to four‐atom reactive scattering: H2+CN→H+HCN , 1990 .

[81]  C. Wong,et al.  Multiproperty determination of a new N2-Ar intermolecular interaction potential energy surface , 1993 .

[82]  A. Sinha,et al.  Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms , 1991 .

[83]  N. Balucani,et al.  Dynamics of the reaction O(1D) + HCl → ClO + H from crossed-beam experiments , 1991 .

[84]  D. A. Shirley,et al.  Rotational relaxation in supersonic beams of hydrogen by high resolution photoelectron spectroscopy , 1982 .

[85]  Dong H. Zhang,et al.  Accurate quantum calculation for the benchmark reaction H2+OH→H2O +H in five‐dimensional space: Reaction probabilities for J=0 , 1993 .

[86]  J. Harrison,et al.  The effect of reagent rotation in the reaction OH( j)+H2( j’)→H2O+H , 1988 .

[87]  J. Williams,et al.  Reactive scattering of a supersonic methyl beam , 1985 .

[88]  W. C. Lineberger,et al.  Transition state spectroscopy of the OH + H2 .fwdarw. H2O + H reaction via photodetachment of H3O- and D3O- , 1995 .

[89]  Hideo Okabe,et al.  Photochemistry of small molecules , 1978 .

[90]  R. Zare,et al.  Effect of reagent vibration on the hydrogen atom + water-d reaction: an example of bond-specific chemistry , 1993 .

[91]  J. Whitehead,et al.  Reactive scattering of methyl radicals: velocity analysis of CH3 + I2, ICl , 1976 .

[92]  W. Miller,et al.  Quantum mechanical calculations of the rate constant for the H2+OH→H+H2O reaction: Full‐dimensional results and comparison to reduced dimensionality models , 1994 .

[93]  Dong H. Zhang,et al.  Quantum dynamics study of the reaction HD+OH --> H+DOH, D+HOH , 1995 .

[94]  J. Wolfrum,et al.  Reaction dynamics, OH energy partitioning, and OH product angular momentum alignment studies: H+H2O→OH+H2 versus H+CO2→OH+CO , 1994 .

[95]  R. Continetti,et al.  Crossed molecular beams study of the reaction D+H2→DH+H at collision energies of 0.53 and 1.01 eV , 1990 .

[96]  J. D. Mcdonald,et al.  Molecular Beam Reactive Scattering Apparatus with Electron Bombardment Detector , 1969 .

[97]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[98]  D. Manolopoulos,et al.  The Transition State of the F + H2 Reaction , 1993, Science.

[99]  K. Gericke,et al.  Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH(X2Π, ν″, J″) , 1982 .

[100]  N. Balucani,et al.  The effect of reagent electronic energy on the dynamics of chemical reactions: A high‐resolution crossed beam study of O(3P,1D)+H2S , 1991 .

[101]  M. Baer,et al.  Three-Dimensional Study of Reactive Diatom-Diatom Systems: Quantum Mechanical State-to-State Cross Sections for the H2 + OX - H + XOH (X = H, D) Reactions , 1994 .

[102]  J. Wolfrum,et al.  H+H2O reaction dynamics: state distribution for the OH product , 1984 .

[103]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[104]  T. Millar,et al.  Rate Coefficients in Astrochemistry. Proceedings of a Conference held in UMIST, Manchester, United Kingdom, September 21-24, 1987. , 1988 .

[105]  Y. Lee,et al.  Molecular Beam Studies of Elementary Chemical Processes , 1987, Science.

[106]  Piergiorgio Casavecchia,et al.  High‐resolution total differential cross sections for scattering of helium by O2, N2, and NO , 1986 .

[107]  Nadia Balucani,et al.  Crossed beam studies of four‐atom reactions: The dynamics of OH+CO , 1993 .

[108]  S. Leone,et al.  Preferential in‐plane rotational excitation of H2O (001) by translational‐to‐vibrational transfer from 2.2 eV H atoms , 1992 .

[109]  G. Schatz,et al.  A quasiclassical trajectory study of product energy and angular distributions in OH + H2 (D2) , 1994 .

[110]  Kopin Liu,et al.  A crossed-beam study of the reaction of CN + D2. Is CN really a spectator bond? , 1995 .

[111]  G. Schatz,et al.  An abinitio calculation of the rate constant for the OH+H2→H2O+H reaction , 1980 .

[112]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[113]  R. Levine,et al.  Molecular Reaction Dynamics and Chemical Reactivity , 1987 .

[114]  E. Dishoeck,et al.  Rotationally inelastic and hyperfine resolved cross sections for OH–H2 collisions. Calculations using a new ab initio potential surface , 1994 .

[115]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[116]  G. Schatz,et al.  Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions , 1993 .

[117]  A. Sinha,et al.  Energy disposal in the vibrational-state- and bond-selected reaction of water with hydrogen atoms , 1991 .

[118]  G. Schatz,et al.  A quasiclassical trajectory study of bond specific chemistry in the reaction H+HOD→H2+OD, HD+OH , 1992 .

[119]  M. Baer,et al.  Quantum mechanical treatment of the H2 + OH ⇔ H + H reactions. Calculations of cross sections and rate constants , 1995 .

[120]  William H. Miller,et al.  Full‐dimensional quantum mechanical calculation of the rate constant for the H2+OH→H2O+H reaction , 1993 .

[121]  D. C. Clary,et al.  Bond-selected reaction of HOD with H atoms , 1992 .

[122]  J. H. Matsumoto,et al.  Effect of Vibrational Excitation in Reactions of OH with H2. , 1978 .

[123]  R. Grice,et al.  Reactive scattering of a supersonic methyl radical beam: CH3 + ICl, IBr, I2, Br2 , 1986 .

[124]  E. A. McCullough,et al.  Molecular beam study of polyatomic free radical reactions. Angular distributions , 1973 .

[125]  Ian W. M. Smith,et al.  Vibrational relaxation of OH(v= 1) and OD(v= 1) by HNO3, DNO3, H2O, NO and NO2 , 1985 .