Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

[1]  T. Fan,et al.  Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.

[2]  T. Kasamatsu,et al.  Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers. , 1999, Applied optics.

[3]  E. Moses,et al.  The National Ignition Facility , 2004 .

[4]  K Mima,et al.  Laser driven inertial fusion energy: present and prospective , 2004 .

[5]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[6]  M. Andre,et al.  The French Megajoule Laser Project (LMJ) , 1999 .

[7]  A. Giesen,et al.  Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Tso Yee Fan,et al.  Optimizing the efficiency and stored energy in quasi-three-level lasers , 1992 .

[9]  Klaus Ertel,et al.  ASE suppression in a high energy Titanium sapphire amplifier. , 2008, Optics express.

[10]  U Schramm,et al.  High-efficiency, room-temperature nanosecond Yb:YAG laser. , 2009, Optics express.

[11]  Mike Dunne,et al.  A high-power laser fusion facility for Europe , 2006 .

[12]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[13]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[14]  Colin N. Danson,et al.  Vulcan Petawatt—an ultra-high-intensity interaction facility , 2004 .

[15]  J. Hein,et al.  Diode-pumped chirped pulse amplification to the joule level , 2004 .

[16]  J. Körner,et al.  Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials , 2011, Optics + Optoelectronics.

[17]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[19]  J.-P. Chambaret,et al.  Extreme light infrastructure: laser architecture and major challenges , 2010, Photonics Europe.

[20]  Klaus Ertel,et al.  Optimised design for a 1 kJ diode-pumped solid-state laser system , 2011, Optics + Optoelectronics.

[21]  Andy J. Bayramian,et al.  The Mercury Project: A High Average Power, Gas-Cooled Laser for Inertial Fusion Energy Development , 2007 .

[22]  G. Bourdet,et al.  Effect of diode wavelength broadening in a diode end-pumped solid-state amplifier. , 2007, Applied optics.

[23]  Ken-ichi Ueda,et al.  Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers , 2006 .

[24]  Andy J. Bayramian,et al.  Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited] , 2011 .

[25]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[26]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[27]  Steven B. Sutton,et al.  Thermal management in inertial fusion energy slab amplifiers , 1995, Other Conferences.

[28]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[29]  G. Bourdet,et al.  Current status of the LUCIA laser system , 2010 .

[30]  S R Nagel,et al.  Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. , 2008, Physical review letters.

[31]  J. Chanteloup,et al.  Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs. , 2009, Optics express.

[32]  Bien Chann,et al.  Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  K. N. LaFortune,et al.  Evolution of a solid state laser , 2007, SPIE Defense + Commercial Sensing.

[34]  刘铖铖,et al.  Y 3 Al 5 O 12 的热输运性质的第一性原理研究 , 2010 .

[35]  R. Cone,et al.  Yb:YAG absorption at ambient and cryogenic temperatures , 2005, IEEE Journal of Selected Topics in Quantum Electronics.