Robust synthesis for linear parameter varying systems using integral quadratic constraints

A robust synthesis algorithm is proposed for a class of uncertain linear parameter varying (LPV) systems. The uncertain system is described as an interconnection of a nominal (not-uncertain) LPV system and an uncertainty whose input/output behavior is described by an integral quadratic constraint (IQC). The proposed algorithm is a coordinate-wise ascent that is similar to the well-known DK iteration for μ-synthesis. In the first step, a nominal controller is designed for the LPV system without uncertainties. In the second step, the robustness of the designed controller is evaluated and a new scaled plant for the next synthesis step is created. The robust performance condition used in the analysis step is formulated as a dissipation inequality that incorporates the IQC and generalizes the Bounded Real Lemma like condition for performance of nominal LPV systems. Both steps can be formulated as a semidefinite program (SDP) and efficiently solved using available optimization software. The effectiveness of the proposed method is demonstrated on a simple numerical example.

[1]  Jacob Engwerda,et al.  Uniqueness conditions for the affine open-loop linear quadratic differential game , 2008, Autom..

[2]  Carsten W. Scherer,et al.  Gain-scheduled synthesis with dynamic positive real multipliers , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[3]  Minyue Fu,et al.  Integral quadratic constraint approach vs. multiplier approach , 2005, Autom..

[4]  M. Safonov,et al.  Simplifying the H∞ theory via loop-shifting, matrix-pencil and descriptor concepts , 1989 .

[5]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[6]  Gary J. Balas,et al.  Robust Control Toolbox™ User's Guide , 2015 .

[7]  Ulf T. Jönsson,et al.  Robust Stability Analysis for Feedback Interconnections of Time-Varying Linear Systems , 2013, SIAM J. Control. Optim..

[8]  Carsten W. Scherer,et al.  IQC‐synthesis with general dynamic multipliers , 2014 .

[9]  A. Megretski KYP Lemma for Non-Strict Inequalities and the associated Minimax Theorem , 2010, 1008.2552.

[10]  Peter Seiler,et al.  Stability Analysis With Dissipation Inequalities and Integral Quadratic Constraints , 2015, IEEE Transactions on Automatic Control.

[11]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[12]  Jacob Engwerda,et al.  LQ Dynamic Optimization and Differential Games , 2005 .

[13]  Carsten W. Scherer,et al.  Robust ℒ︁2‐gain feedforward control of uncertain systems using dynamic IQCs , 2009 .

[14]  Peter M. Young,et al.  Robustness with parametric and dynamic uncertainty , 1993 .

[15]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[16]  Carsten W. Scherer,et al.  On robust LPV controller synthesis: A dynamic Integral Quadratic Constraint based approach , 2010, 49th IEEE Conference on Decision and Control (CDC).

[17]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[18]  Alexander Lanzon,et al.  Factorization of multipliers in passivity and IQC analysis , 2011, IEEE Conference on Decision and Control and European Control Conference.

[19]  Peter J Seiler,et al.  Gain scheduled active power control for wind turbines , 2014 .

[20]  Carsten W. Scherer,et al.  Robust mixed control and linear parameter-varying control with full block scalings , 1999 .

[21]  Matthew C. Turner,et al.  L gain bounds for systems with sector bounded and slope-restricted nonlinearities , 2012 .

[22]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[23]  Carsten W. Scherer,et al.  Gain-scheduled control synthesis using dynamic D-Scales , 2010, 49th IEEE Conference on Decision and Control (CDC).

[24]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[25]  Peter J Seiler,et al.  Robustness analysis of linear parameter varying systems using integral quadratic constraints , 2015 .

[26]  Hans Zwart,et al.  J-spectral factorization and equalizing vectors , 2001, Syst. Control. Lett..

[27]  Goele Pipeleers,et al.  Control of linear parameter-varying systems using B-splines , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[28]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[29]  Harald Pfifer,et al.  Robust synthesis for linear parameter varying systems using integral quadratic constraints , 2014, CDC 2014.

[30]  Peter J Seiler,et al.  Linear, parameter varying model reduction for aeroservoelastic systems , 2012 .

[31]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[32]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[33]  I. Postlethwaite,et al.  Linear Matrix Inequalities in Control , 2007 .

[34]  Nedjeljko Peric,et al.  Linear parameter varying approach to wind turbine control , 2010, Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010.

[35]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[36]  M. A. Kaashoek,et al.  Minimal Factorization of Matrix and Operator Functions , 1980 .

[37]  Peter Seiler,et al.  Robustness analysis of linear parameter varying systems using integral quadratic constraints , 2014, 2014 American Control Conference.

[38]  Shaohua Tan,et al.  Gain scheduling: from conventional to neuro-fuzzy , 1997, Autom..

[39]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[40]  Ulf Jönsson,et al.  Robustness Analysis of Uncertain and Nonlinear Systems , 1996 .

[41]  M. Safonov,et al.  SIMPLIFYING THE H" THEORY VIA LOOP SHIFTING* , 1988 .

[42]  Peter M. Young,et al.  Controller design with mixed uncertainties , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[43]  A. Schaft,et al.  L2-Gain and Passivity in Nonlinear Control , 1999 .