Thermophysical characterisation of VO2 thin films hysteresis and its application in thermal rectification

Hysteresis loops exhibited by the thermophysical properties of VO2 thin films deposited on either a sapphire or silicon substrate have been experimentally measured using a high frequency photothermal radiometry technique. This is achieved by directly measuring the thermal diffusivity and thermal effusivity of the VO2 films during their heating and cooling across their phase transitions, along with the film-substrate interface thermal boundary resistance. These thermal properties are then used to determine the thermal conductivity and volumetric heat capacity of the VO2 films. A 2.5 enhancement of the VO2 thermal conductivity is observed during the heating process, while its volumetric heat capacity does not show major changes. This sizeable thermal conductivity variation is used to model the operation of a conductive thermal diode, which exhibits a rectification factor about 30% for small temperature differences (≈70 °C) on its terminals. The obtained results grasp thus new insights on the control of heat currents.

[1]  C. Felser,et al.  Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires , 2014 .

[2]  C. Xie,et al.  Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles , 2017, Nature Communications.

[3]  V. Gubanov,et al.  The phase transition in VO2 , 1976 .

[4]  K. Joulain,et al.  Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor , 2015, 1502.06712.

[5]  Patrick E. Hopkins,et al.  Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance , 2013 .

[6]  C. N. Berglund,et al.  Electronic Properties of V O 2 near the Semiconductor-Metal Transition , 1969 .

[7]  Rene Lopez,et al.  Size effects in the structural phase transition of VO2 nanoparticles , 2002 .

[8]  J. J. Alvarado-Gil,et al.  Modeling of the electrical conductivity, thermal conductivity, and specific heat capacity of VO2 , 2018, Physical Review B.

[9]  Kawakubo Tatsuyuki,et al.  Phase Transition in VO2 , 1964 .

[10]  Jie Chen,et al.  Experimental study of thermal rectification in suspended monolayer graphene , 2017, Nature Communications.

[11]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[12]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[13]  E. H. Buyco,et al.  Specific Heat: Nonmetallic Solids , 1970 .

[14]  Lei Wang,et al.  Phononics gets hot , 2008 .

[15]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[16]  Sylvain Fourmaux,et al.  Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films , 2005 .

[17]  B. Kahng,et al.  Surface versus bulk characterizations of electronic inhomogeneity in a VO2 thin film , 2007, 0707.4516.

[18]  Philippe Ben-Abdallah,et al.  Near-field thermal transistor. , 2013, Physical review letters.

[19]  A. Fong,et al.  A photon thermal diode , 2014, Nature Communications.

[20]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[21]  Mihai Chirtoc,et al.  Electronic contribution in heat transfer at metal-semiconductor and metal silicide-semiconductor interfaces , 2018, Scientific Reports.

[22]  D. N. Basov,et al.  Correlated metallic state of vanadium dioxide , 2006 .

[23]  Zhaoyang Fan,et al.  Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates , 2012 .

[24]  C. Champeaux,et al.  Thermal hysteresis measurement of the VO2 dielectric function for its metal-insulator transition by visible-IR ellipsometry , 2018, Journal of Applied Physics.

[25]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[26]  S. Hartnoll,et al.  Theory of universal incoherent metallic transport , 2014, Nature Physics.

[27]  R. K. Kirby,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys , 1975 .

[28]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[29]  James M. Hill,et al.  Conductive thermal diode based on the thermal hysteresis of VO 2 and nitinol , 2018 .

[30]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[31]  Subrata Mondal,et al.  Phase change materials for smart textiles – An overview , 2008 .

[32]  J. Rodríguez-Viejo,et al.  Ultra-Low Thermal Conductivity in Nanoscale Layered Oxides , 2010 .

[33]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[34]  A. Zettl,et al.  Solid-State Thermal Rectifier , 2006, Science.

[35]  J. Ordonez-Miranda,et al.  Optimized thermal amplification in a radiative transistor , 2016 .

[36]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[37]  Darryl P Almond,et al.  Photothermal science and techniques , 1996 .

[38]  Elbara Ziade,et al.  Uncertainty analysis of thermoreflectance measurements. , 2016, The Review of scientific instruments.

[39]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[40]  Junqiao Wu,et al.  Thermal diodes, regulators, and switches: Physical mechanisms and potential applications , 2017 .

[41]  K. L. Chopra,et al.  Thermal conductivity of amorphous and crystalline Ge and GeTe films , 1974 .

[42]  C. N. Berglund,et al.  Optical Properties of VO2between 0.25 and 5 eV , 1968 .

[43]  Svend-Age Biehs,et al.  Phase-change radiative thermal diode , 2013, 1307.3154.

[44]  W. Chu,et al.  Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam , 2017, Nature Communications.

[45]  Q. Jiang,et al.  Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides , 2018, Nature Communications.

[46]  H. Toshiyoshi,et al.  Experimental investigation of radiative thermal rectifier using vanadium dioxide , 2014 .

[47]  W. Paul The present position of theory and experiment for VO2 , 1970 .

[48]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[49]  Mary Anne White,et al.  Thermal conductivity of crystalline particulate materials , 2000 .

[50]  G. Gu,et al.  Effective properties of spherically anisotropic piezoelectric composites , 2007 .

[51]  T. Yagi,et al.  Temperature dependence of thermal conductivity of VO2 thin films across metal–insulator transition , 2015 .

[52]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[53]  Patrick E. Phelan,et al.  A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .

[54]  Y. S. Touloukian Thermal conductivity: metallic elements and alloys , 1971 .

[55]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[56]  A. Balandin,et al.  Thermal Boundary Resistance and Heat Diffusion in AlGaN/GaN HFETs , 2003 .

[57]  Kannatassen Appavoo,et al.  Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.

[58]  D. Cahill,et al.  Thermal Conductance of metal-metal interfaces , 2005 .

[59]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[60]  Alan J. H. McGaughey,et al.  Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations , 2009 .

[61]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[62]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[63]  C. N. Berglund,et al.  Optical Properties of V O 2 between 0.25 and 5 eV , 1968 .

[64]  D. Maillet,et al.  Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms , 2000 .

[65]  J. Honig,et al.  Heat capacity of VO2 single crystals , 1973 .

[66]  P. H. Vander Weyde,et al.  On Specific Heat , 1871 .

[67]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[68]  R. O. Pohl,et al.  Thermal resistance at interfaces , 1987 .

[69]  G. Stucky,et al.  VO 2 ( B ) nanorods : solvothermal preparation , electrical properties , and conversion to rutile VO 2 and V 2 O 3 † , 2009 .

[70]  O. Cook High-Temperature Heat Contents of V2O3, V2O4 and V2O51 , 1947 .

[71]  Fan Yang,et al.  Anomalously low electronic thermal conductivity in metallic vanadium dioxide , 2017, Science.

[72]  Roman V. Kruzelecky,et al.  Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications , 2011 .

[73]  A. Bernussi,et al.  Temperature dependence of the optical properties of VO 2 deposited on sapphire with different orientations , 2012 .

[74]  Qiang Sun,et al.  Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing , 2018, Nature Communications.

[75]  M. Chirtoc,et al.  Thermophysical properties of methacrylic polymer films with guest-host and side-chain azobenzene , 2019, Materials Chemistry and Physics.

[76]  John D. Budai,et al.  Metallization of vanadium dioxide driven by large phonon entropy , 2014, Nature.

[77]  G. Stucky,et al.  VO2(B) nanorods: solvothermal preparation, electrical properties, and conversion to rutile VO2 and V2O3 , 2009 .

[78]  A. S. Barker,et al.  Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature , 1966 .

[79]  J. Alvarez-Quintana,et al.  Thermal rectification assisted by lattice transitions , 2014 .

[80]  Strongly Correlated Materials , 2012, Advanced materials.

[81]  H. Ban,et al.  Kapitza thermal resistance studied by high-frequency photothermal radiometry , 2016 .

[82]  J. J. Alvarado-Gil,et al.  Thermal hysteresis measurement of the VO2 emissivity and its application in thermal rectification , 2018, Scientific Reports.

[83]  C. Felser,et al.  Iron-based Heusler compounds Fe2YZ: Comparison with theoretical predictions of the crystal structure and magnetic properties , 2013, 1301.1988.

[84]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[85]  Luigi Colombo,et al.  Effect of nitrogen on band alignment in HfSiON gate dielectrics , 2005 .

[86]  V. M. Ghete,et al.  Observation of the Associated Production of a Single Top Quark and a W Boson in pp Collisions at √s=8 TeV , 2014, 1401.2942.

[87]  Ying Li,et al.  Fabrication of VO2-based multilayer structure with variable emittance , 2015 .

[88]  L. Feldman,et al.  Size-dependent optical properties of VO2 nanoparticle arrays. , 2004, Physical review letters.

[89]  Shriram Ramanathan,et al.  Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2 , 2010 .

[90]  A. Fleming Nonlinear Photothermal Radiometry and its Applications to Pyrometry and Thermal Property Measurements , 2017 .

[91]  Ahmed H. Zewail,et al.  4D Visualization of Transitional Structures in Phase Transformations by Electron Diffraction , 2007, Science.