Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs

Spectral unmixing is one of the most popular techniques to analyze remotely sensed hyperspectral images. It generally comprises three stages: (1) reduction of the dimensionality of the original image to a proper subspace; (2) automatic identification of pure spectral signatures (called endmembers); and (3) estimation of the fractional abundance of each endmember in each pixel of the scene. The spectral unmixing process allows sub-pixel analysis of hyperspectral images, but can be computationally expensive due to the high dimensionality of the data. In this paper, we develop the first real-time implementation of a full spectral unmixing chain in commodity graphics processing units (GPUs). These hardware accelerators offer a source of computational power that is very appealing in hyperspectral remote sensing applications, mainly due to their low cost and adaptivity to on-board processing scenarios. The implementation has been developed using the compute device unified architecture (CUDA) and tested on an NVidia™ GTX 580 GPU, achieving real-time unmixing performance in two different case studies: (1) characterization of thermal hot spots in hyperspectral images collected by NASA’s Airborne Visible Infra-red Imaging Spectrometer (AVIRIS) during the terrorist attack to the World Trade Center complex in New York City, and (2) sub-pixel mapping of minerals in AVIRIS hyperspectral data collected over the Cuprite mining district in Nevada.

[1]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[2]  Antonio J. Plaza,et al.  Parallel Hyperspectral Image and Signal Processing [Applications Corner] , 2011, IEEE Signal Processing Magazine.

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Antonio J. Plaza,et al.  Parallel Morphological Endmember Extraction Using Commodity Graphics Hardware , 2007, IEEE Geoscience and Remote Sensing Letters.

[5]  David R. Kaeli,et al.  Accelerating an Imaging Spectroscopy Algorithm for Submerged Marine Environments Using Graphics Processing Units , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[7]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[10]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[11]  Maurice Clint,et al.  The Evaluation of Eigenvalues and Eigenvectors of Real Symmetric Matrices by Simultaneous Iteration , 1970, Comput. J..

[12]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[13]  Francisco Tirado,et al.  GPU for Parallel On-Board Hyperspectral Image Processing , 2008, Int. J. High Perform. Comput. Appl..

[14]  B. Parlett,et al.  Relatively robust representations of symmetric tridiagonals , 2000 .

[15]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[16]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[17]  Julien Michel,et al.  Remote Sensing Processing: From Multicore to GPU , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Nirmal Keshava,et al.  A Survey of Spectral Unmixing Algorithms , 2003 .

[19]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[20]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Beresford N. Parlett,et al.  The Symmetric Eigenvalue Problem (Classics in Applied Mathematics, Number 20) , 1999 .

[22]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[23]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[24]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[25]  Antonio J. Plaza,et al.  Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images , 2010, EURASIP J. Adv. Signal Process..

[26]  Bormin Huang,et al.  GPU Acceleration of Predictive Partitioned Vector Quantization for Ultraspectral Sounder Data Compression , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Chein-I Chang,et al.  High Performance Computing in Remote Sensing , 2007, HiPC 2007.

[28]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[29]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[30]  Yuliya Tarabalka,et al.  Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing , 2009, Journal of Real-Time Image Processing.

[31]  Antonio J. Plaza,et al.  Commodity cluster-based parallel processing of hyperspectral imagery , 2006, J. Parallel Distributed Comput..

[32]  Antonio J. Plaza,et al.  Improving the Performance of Hyperspectral Image and Signal Processing Algorithms Using Parallel, Distributed and Specialized Hardware-Based Systems , 2010, J. Signal Process. Syst..

[33]  Qian Du,et al.  High Performance Computing for Hyperspectral Remote Sensing , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[36]  Qian Du,et al.  Foreword to the Special Issue on High Performance Computing in Earth Observation and Remote Sensing , 2011, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens..

[37]  Antonio J. Plaza,et al.  Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units , 2011, Concurr. Comput. Pract. Exp..

[38]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[39]  Antonio J. Plaza,et al.  Special issue on architectures and techniques for real-time processing of remotely sensed images , 2009, Journal of Real-Time Image Processing.

[40]  Antonio J. Plaza,et al.  Recent Developments in High Performance Computing for Remote Sensing: A Review , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Qian Du,et al.  Unsupervised Hyperspectral Band Selection Using Graphics Processing Units , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.