A ck n 5-Approximation Algorithm for Treewidth

We give an algorithm that for an input $n$-vertex graph $G$ and integer $k>0$, in time $2^{O(k)} n$, either outputs that the treewidth of $G$ is larger than $k$, or gives a tree decomposition of $G$ of width at most $5k+4$. This is the first algorithm providing a constant factor approximation for treewidth which runs in time single exponential in $k$ and linear in $n$. Treewidth-based computations are subroutines of numerous algorithms. Our algorithm can be used to speed up many such algorithms to work in time which is single exponential in the treewidth and linear in the input size.

[1]  Jeffrey Scott Vitter,et al.  Dynamic algorithms for optimization problems in bounded tree-width graphs , 1993, IPCO.

[2]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[3]  Michael R. Fellows,et al.  An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[4]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[5]  Andreas Jakoby,et al.  Logspace Versions of the Theorems of Bodlaender and Courcelle , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[6]  Michal Pilipczuk,et al.  Fixed-Parameter Tractable Canonization and Isomorphism Test for Graphs of Bounded Treewidth , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[7]  Bruce A. Reed,et al.  An Improved Algorithm for Finding Tree Decompositions of Small Width , 1999, WG.

[8]  Jens Lagergren,et al.  Efficient Parallel Algorithms for Graphs of Bounded Tree-Width , 1996, J. Algorithms.

[9]  Stefan Kratsch,et al.  Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.

[10]  Torben Hagerup Dynamic Algorithms for Graphs of Bounded Treewidth , 1997, ICALP.

[12]  Stefan Kratsch,et al.  Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time , 2012, ArXiv.

[13]  Eyal Amir,et al.  Approximation Algorithms for Treewidth , 2010, Algorithmica.

[14]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[15]  Fedor V. Fomin,et al.  Equitable Colorings of Bounded Treewidth Graphs , 2004, MFCS.

[16]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[17]  Dominique Barth,et al.  Tree decomposition and parameterized algorithms for RNA structure-sequence alignment including tertiary interactions and pseudoknots , 2012, WABI.

[18]  Hans L. Bodlaender,et al.  Dynamic Algorithms for Graphs with Treewidth 2 , 1993, WG.

[19]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[20]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[21]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[22]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[23]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[24]  D. ChaudhuriChristos,et al.  Shortest Paths in Digraphs of Small Treewidth . Part II : Optimal Parallel Algorithms , 1995 .

[25]  Daniel Gildea,et al.  Grammar Factorization by Tree Decomposition , 2011, Computational Linguistics.

[26]  Toniann Pitassi,et al.  Inapproximability of Treewidth, One-Shot Pebbling, and Related Layout Problems , 2011, APPROX-RANDOM.

[27]  Tim Roughgarden,et al.  Combinatorial auctions with restricted complements , 2012, EC '12.

[28]  Christos D. Zaroliagis,et al.  Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms , 2000, Algorithmica.

[29]  Michael R. Fellows,et al.  Finite automata, bounded treewidth, and well-quasiordering , 1991, Graph Structure Theory.

[30]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[31]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[32]  J. Reif,et al.  Parallel Tree Contraction Part 1: Fundamentals , 1989, Adv. Comput. Res..

[33]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[34]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[35]  B. Mohar,et al.  Graph Minors , 2009 .

[36]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[37]  Gary L. Miller,et al.  Parallel Tree Contraction, Part 2: Further Applications , 1991, SIAM J. Comput..

[38]  Arie M. C. A. Koster,et al.  Solving partial constraint satisfaction problems with tree decomposition , 2002, Networks.

[39]  Stefan Kratsch,et al.  Deterministic Single Exponential Time Algorithms for Connectivity Problems Parameterized by Treewidth , 2013, ICALP.

[40]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[41]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[42]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.