Interval translation mappings

Abstract A class of locally isometric, but not necessarily invertible mappings of an interval is considered. We show that under some conditions the study of the dynamical properties of these mappings can be reduced to interval exchange transformations. On the other hand, there are examples of mappings in this class with ergodic invariant measures supported by Cantor sets. The so-called μβ -sets studied by Y. Katznelson appear naturally in such examples.