A three dimensional parametric mesher

A parametric meshing technique is presented. Its distinctive feature relies on approximating the CAD geometry through a hierarchical process where information is gradually gathered. It leads to a robust and high quality mesh for CAD geometries. Emphasis is put on the use of three dimensional information. Limitations of parametric plane meshing is also highlighted. Zero and first order surface approximations are commented, and parametric mesh generation techniques are compared. In the context of the DOD CREATE-MG project, different CAD kernels and meshers communicate through application programming interfaces (API) as plugins. The parametric mesher is coupled to the CAD through the Capstone API’s and is independent of a particular CAD kernel. Numerous examples illustrate the method ’s capabilities.

[1]  Patrick Laug,et al.  Some aspects of parametric surface meshing , 2010 .

[2]  Houman Borouchaki,et al.  Simplification of composite parametric surface meshes , 2004, Engineering with Computers.

[3]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[4]  Petr Krysl,et al.  Triangulation of 3D surfaces , 1997, Engineering with Computers.

[5]  Marc Vigo,et al.  Computing directional constrained Delaunay triangulations , 2000 .

[6]  Paul-Louis George,et al.  Maillage de surfaces paramtriques. Partie I : Aspects thoriques , 1997 .

[7]  Les A. Piegl,et al.  Tessellating trimmed surfaces , 1995, Comput. Aided Des..

[8]  Marshal L. Merriam,et al.  An efficient advancing front algorithm for Delaunay triangulation , 1991 .

[9]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[10]  Nigel P. Weatherill,et al.  Automatic Unstructured Surface Mesh Generation for Complex Configurations , 2004 .

[11]  Adrien Loseille,et al.  On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers , 2009, IMR.

[12]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[13]  W. Kühnel Differential Geometry: Curves - Surfaces - Manifolds , 2002 .

[14]  Rainald Lhner Applied Computational Fluid Dynamics Techniques , 2008 .

[15]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[16]  Yuanxian Gu,et al.  An extended advancing front technique for closed surfaces mesh generation , 2008 .

[17]  P. George,et al.  Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .

[18]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[19]  N. Weatherill,et al.  Unstructured grid generation using iterative point insertion and local reconnection , 1995 .

[20]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[21]  Chi King Lee,et al.  Automatic metric advancing front triangulation over curved surfaces , 2000 .

[22]  E. Oñate,et al.  Assessment of a Lagrangian Incompressible Flow Code , 2007 .

[23]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[24]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[25]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[26]  Rainald Löhner,et al.  Three-dimensional grid generation by the advancing front method , 1988 .

[27]  R. Löhner,et al.  Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods , 2001 .

[28]  Rainald Löhner,et al.  An advancing front point generation technique , 1998 .

[29]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[30]  Gershon Elber Error bounded piecewise linear approximation of freeform surfaces , 1996, Comput. Aided Des..

[31]  Guillaume Houzeaux,et al.  A surface remeshing approach , 2010 .