Biochemical and molecular aspects of growth and fruiting of the edible mushroom Agaricus bisporus

The introduction of recombinant DNA technology in the field of mushroom research has resulted in the cloning and characterization of a large number of genes. In order to study the genetics of compost colonization of A. bisporus, genes encoding enzymes involved in utilization of this substrate have been isolated. In addition, a number of genes which are induced in fruit bodies during fruit body development have been cloned and they will provide more insight in the genetics of this economically important aspect of the life cycle. Other genes that were cloned encode proteins of basic biochemical routes. They provide knowledge on the importance and regulation of these routes in the life cycle of A. bisporus and add to knowledge on the general architecture of A. bisporus genes. Here we present an overview of the currently available biochemical and molecular data of A. bisporus and we discuss the importance of the available genes as genetic markers for breeding purposes.

[1]  A. P. Gunning,et al.  Atomic Force Microscopy of a Hydrophobin Protein from the Edible MushroomAgaricus bisporus , 1998 .

[2]  J. Drenth,et al.  The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. , 1994, European journal of cell biology.

[3]  C. Raper,et al.  Genetic Analysis of the Life Cycle of Agaricus Bisporus , 1972 .

[4]  J. Visser,et al.  An endo-1,4-beta-xylanase-encoding gene from Agaricus bisporus is regulated by compost-specific factors. , 1998, Journal of molecular biology.

[5]  T. Fermor,et al.  Degradation of Fungal and Actinomycete Mycelia by Agaricus bisporus , 1985 .

[6]  F. Schuren,et al.  Interfacial self‐assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. , 1994, The EMBO journal.

[7]  K. Ito,et al.  Cloning and sequencing of the xynC gene encoding acid xylanase of Aspergillus kawachii. , 1992, Bioscience, biotechnology, and biochemistry.

[8]  J. Hammond,et al.  CARBOHYDRATE METABOLISM IN AGARICUS BISPORUS (LANGE) IMBACH.: METABOLISM OF [14C] LABELLED SUGARS BY SPOROPHORES AND MYCELIUM , 1977 .

[9]  B. Yashar,et al.  Changes in polyadenylated RNA sequences associated with fruiting body morphogenesis in Coprinus cinereus , 1985 .

[10]  J. Visser,et al.  Molecular characterization of the glnA gene encoding glutamine synthetase from the edible mushroom Agaricus bisporus , 1997, Molecular and General Genetics MGG.

[11]  J. Visser,et al.  The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. , 1996, Journal of molecular biology.

[12]  D. Wood,et al.  Developmental Biology of Higher Fungi. , 1986 .

[13]  J. Hammond,et al.  Carbohydrate metabolism in Agaricus bisporus (Lange) Sing: changes in soluble carbohydrates during growth of mycelium and sporophore. , 1976, Journal of general microbiology.

[14]  K. Gull,et al.  Subhymenial branching and dolipore septation in Agaricus bisporus , 1977 .

[15]  James B. Anderson,et al.  Inheritance of restriction fragment length polymorphisms in Agaricus brunnescens. , 1989, Genetics.

[16]  C. Thurston,et al.  Expression of CEL2 and CEL4, two proteins from Agaricus bisporus with similarity to fungal cellobiohydrolase I and beta-mannanase, respectively, is regulated by the carbon source. , 1997, Microbiology.

[17]  M. Coughlan,et al.  beta‐1,4‐D‐xylan‐degrading enzyme systems: biochemistry, molecular biology and applications , 1993, Biotechnology and applied biochemistry.

[18]  J. Visser,et al.  Isolation of expressed sequence tags of Agaricus bisporus and their assignment to chromosomes , 1996, Applied and environmental microbiology.

[19]  L. Lugones,et al.  An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. , 1996, Microbiology.

[20]  J. Visser,et al.  Regulation of the xylanase‐encoding xlnA gene of Aspergilius tubigensis , 1994, Molecular microbiology.

[21]  H. Ruffner,et al.  Purification and properties of mannitol dehydrogenase from Agaricus bisporus sporocarps , 1978 .

[22]  Dora M. Rast,et al.  Biochemische beziehung zwischen mannitbildung und hexosemonophosphatzyklus in agaricus bisporus , 1972 .

[23]  G. Straatsma,et al.  Inoculation of Scytalidium thermophilum in Button Mushroom Compost and Its Effect on Yield , 1994, Applied and environmental microbiology.

[24]  D. J. Niederpruem,et al.  CONTROL OF GLUTAMATE DEHYDROGENASE IN THE BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE. , 1965, Life sciences.

[25]  C. Thurston,et al.  The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. , 1993, Journal of general microbiology.

[26]  J. A. Pateman Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. , 1969, The Biochemical journal.

[27]  W. Timberlake,et al.  Molecular genetics of Aspergillus development. , 1990, Annual review of genetics.

[28]  S. Moukha,et al.  Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus , 1992, Current Genetics.

[29]  J. Visser,et al.  Molecular characterization of genes involved in carbon metabolism and ammonium assimilation of the button mushroom Agaricus bisporus. , 1995 .

[30]  P. Birch,et al.  Lignocellulose degradation by Phanerochaete chrysosporium: gene families and gene expression for a complex process , 1996, Molecular microbiology.

[31]  J. Payne Microorganisms and nitrogen sources. , 1980 .

[32]  G. Vogels,et al.  Population Dynamics of Scytalidium thermophilum in Mushroom Compost and Stimulatory Effects on Growth Rate and Yield of Agaricus bisporus , 1989 .

[33]  C. Yanofsky,et al.  Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. , 1992, Genes & development.

[34]  D. Wood,et al.  Fruit body biomass regulated production of extracellular endocellulase during periodic fruiting by Agaricus bisporus , 1988 .

[35]  Ted R. Schultz,et al.  Evolutionary History of the Symbiosis Between Fungus-Growing Ants and Their Fungi , 1994, Science.

[36]  R. Kerrigan,et al.  Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. , 1993, Genetics.

[37]  J. Wessels,et al.  Hydrophobins: proteins that change the nature of the fungal surface. , 1997, Advances in microbial physiology.

[38]  M. D. van de Rhee,et al.  Highly efficient homologous integration via tandem exo-β-1,3-glucanase genes in the common mushroom, Agaricus bisporus , 1996, Current Genetics.

[39]  L. Jacobs,et al.  Aseptic fruiting of the cultivated mushroom, Agaricus bisporus , 1974 .

[40]  J. Visser,et al.  The Agaricus bisporus pruA gene encodes a cytosolic delta 1-pyrroline-5-carboxylate dehydrogenase which is expressed in fruit bodies but not in gill tissue , 1997, Applied and environmental microbiology.

[41]  D. Wood,et al.  Production and Regulation of Extracellular Endocellulase by Agaricus bisporus , 1983 .

[42]  D. Wood,et al.  A developmental variant of Agaricus bisporus , 1978 .

[43]  J. Visser,et al.  Purification and characterization of NADP-dependent glutamate dehydrogenase from the commercial mushroom Agaricus bisporus , 1995, Current Microbiology.

[44]  D. Wood Production, Purification and Properties of Extracellular Laccase of Agaricus bisporus , 1980 .

[45]  L. Griensven,et al.  Morphological studies on the life span, developmental stages, senescence and death of fruit bodies of Agaricus bisporus , 1997 .

[46]  K. Ito,et al.  Cloning and sequencing of the xynA gene encoding xylanase A of Aspergillus kawachii. , 1992, Bioscience, biotechnology, and biochemistry.

[47]  R. Kerrigan,et al.  BSN, the primary determinant of basidial spore number and reproductive mode in Agaricus bisporus, maps to chromosome I , 1996 .

[48]  L. Griensven,et al.  Morphology of Agaricus bisporus in health and disease , 1995 .

[49]  Nicholson,et al.  Phylogeny of the Genus Agaricus Inferred from Restriction Analysis of Enzymatically Amplified Ribosomal DNA , 1996, Fungal genetics and biology : FG & B.

[50]  D. Wood,et al.  The biology and technology of the cultivated mushroom. , 1985 .

[51]  A. Ball,et al.  The recovery of lignocellulose-degrading enzymes from spent mushroom compost , 1995 .

[52]  C. Thurston The structure and function of fungal laccases , 1994 .

[53]  D. Wood,et al.  Production of Bacteriolytic Enzymes and Degradation of Bacterial Cell Walls During Growth of Agaricus bisporus on Bacillus subtilis , 1984 .

[54]  R. Dean,et al.  Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. , 1991, Genes & development.

[55]  F. Schuren,et al.  Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune: homologies with a gene not regulated by mating-type genes. , 1990, Gene.

[56]  Robert A. Samson,et al.  Ecology of Thermophilic Fungi in Mushroom Compost, with Emphasis on Scytalidium thermophilum and Growth Stimulation of Agaricus bisporus Mycelium , 1994, Applied and environmental microbiology.

[57]  Edmundowicz Jm,et al.  MANNITOL DEHYDROGENASE FROM AGARICUS CAMPESTRIS. , 1963 .

[58]  W. Hayes,et al.  The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing , 1969 .

[59]  E. Grossbard,et al.  Straw decay and its effect on disposal and utilization: Proceedings of a Symposium on Straw Decay and Workshop on Assessment Techniques, held at Hatfield Polytechnic, April 10-11th 1979 , 1979 .

[60]  D. Wood Primordium Formation in Axenic Cultures of Agaricus bisporus (Lange) Sing. , 1976 .

[61]  D. Wood,et al.  Effect of substrate depth on extracellular endocellulase and laccase production of Agaricus bisporus , 1989 .

[62]  M. Yaguchi,et al.  Amino acid sequence and thermostability of xylanase A from schizophyllum commune , 1993, FEBS letters.

[63]  J. Wessels,et al.  MOLECULAR-CLONING OF RNAS DIFFERENTIALLY EXPRESSED IN MONOKARYONS AND DIKARYONS OF SCHIZOPHYLLUM-COMMUNE IN RELATION TO FRUITING , 1986 .

[64]  S. Masaphy,et al.  Scanning Electron Microscope Studies of Interactions between Agaricus bisporus (Lang) Sing Hyphae and Bacteria in Casing Soil , 1987, Applied and environmental microbiology.

[65]  Desmond G. Higgins,et al.  Fast and sensitive multiple sequence alignments on a microcomputer , 1989, Comput. Appl. Biosci..

[66]  L. Griensven,et al.  The role of morphogenetic cell death in the histogenesis of the mycelial cord of Agaricus bisporus and in the development of macrofungi , 1998 .

[67]  W. Timberlake,et al.  Isolation and molecular characterization of the Aspergillus nidulans wA gene. , 1990, Genetics.

[68]  C. Thurston,et al.  CEL1: a novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. , 1994, FEMS microbiology letters.

[69]  J. Hammond,et al.  VARIATIONS IN ACTIVITIES OF GLYCOGEN PHOSPHORYLASE AND TREHALASE DURING THE PERIODIC FRUITING OF THE EDIBLE MUSHROOM AGARICUS BISPORUS (LANGE) IMBACH. , 1987 .

[70]  T. Yoshimoto,et al.  Purification and characterization of an extracellular prolyl endopeptidase from Agaricus bisporus. , 1990, Journal of biochemistry.

[71]  R. Kerrigan Global genetic resources for Agaricus breeding and cultivation , 1995 .

[72]  D. Wood,et al.  Production, regulation and release of extracellular proteinase activity in basidiomycete fungi , 1987 .

[73]  W. Timberlake,et al.  dewA encodes a fungal hydrophobin component of the Aspergillus spore wall , 1995, Molecular microbiology.

[74]  C. Thurston,et al.  Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. , 1993, Journal of general microbiology.

[75]  C. Thurston,et al.  Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus. , 1992, Gene.

[76]  H. Wösten,et al.  A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom). , 1998, Microbiology.

[77]  D. Bell-Pedersen,et al.  The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. , 1992, Genes & development.

[78]  A. Orth,et al.  Lignin-Degrading Enzymes of the Commercial Button Mushroom, Agaricus bisporus , 1994, Applied and environmental microbiology.

[79]  L. J. L. D. van Griensven,et al.  The cultivation of mushrooms. , 1988 .

[80]  C. Thurston,et al.  The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source , 1994, Applied and environmental microbiology.

[81]  D. Wood,et al.  Degradation of Bacteria by Agaricus bisporus and Other Fungi , 1981 .

[82]  D. Wood,et al.  Protein utilization by basidiomycete fungi , 1986 .

[83]  R. Kerrigan,et al.  Localization of the Mating Type Gene in Agaricus bisporus , 1993, Applied and environmental microbiology.

[84]  K. Burton,et al.  Expression of Intracellular Enzymes During Hyphal Aggregate Formation in a Fruiting-Impaired Variant of Agaricus bisporus , 1996, Current Microbiology.

[85]  J. Labarère,et al.  Isolation of transcripts preferentially expressed during fruit body primordia differentiation in the basidiomycete Agrocybe aegerita , 1991, Current Genetics.

[86]  J. Visser,et al.  Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. , 1997, Microbiology.

[87]  D. Wood,et al.  Production and detection of muramidase and acetylglucosaminidase from Agaricus bisporus , 1997, Letters in applied microbiology.

[88]  J. Hammond,et al.  CARBOHYDRATE METBOLISM IN AGARICUS BISPORUS: CHAGES IN NON‐STRUCTURAL CARBROHYDRATES DURING PERIODIC FRUITING (FLUSHING) , 1979 .

[89]  D. Moore,et al.  The Activities of Glutamate Dehydrogenases during Mycelial Growth and Sporophore Development in Coprinus lagopus (sensu Lewis) , 1974 .

[90]  J. Visser,et al.  Identification, isolation and sequence of the Aspergillus nidulans xlnC gene encoding the 34-kDa xylanase. , 1996, Gene.

[91]  Gerlind Eger Untersuchungen über die Funktion der Deckschicht bei der Fruchtkörperbildung des Kulturchampignons, Psalliota bispora Lge. , 1961, Archiv für Mikrobiologie.

[92]  C. Thurston,et al.  Purification and characterization of a serine proteinase from senescent sporophores of the commercial mushroom Agaricus bisporus. , 1993, Journal of general microbiology.

[93]  Z. A. Patrick,et al.  Effect of bacteria associated with mushroom compost and casing materials on basidiomata formation in Agaricus bisporus , 1990 .